"Deep Learning Approaches for Sarcasm Detection in Audio Signals: A Literature Review"
Authors
Department of Electronics and Computer science, RTMNU, Nagpur (India)
Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee (India)
Article Information
DOI: 10.51584/IJRIAS.2025.100900068
Subject Category: Education
Volume/Issue: 10/9 | Page No: 676-689
Publication Timeline
Submitted: 2025-09-17
Accepted: 2025-09-24
Published: 2025-10-17
Abstract
This study reviews recent progress in sarcasm detection, with a particular emphasis on audio-based methods. Drawing on 58 scholarly articles, it traces the development of machine learning, deep learning, and hybrid approaches designed to identify sarcasm through vocal features such as intonation, pitch, and rhythm. The review underscores the need for robust models capable of capturing cultural and linguistic variations in how sarcasm is conveyed. Looking ahead, researchers are encouraged to explore multimodal systems that combine audio with textual analysis to boost accuracy. The broader significance of this work lies in its potential to enhance human-computer interaction and communication technologies across diverse sectors worldwide.
Keywords
Sarcasm detection, Machine learning, Audio analysis.
Downloads
References
1. Albacete-Maza, J., Fernández-Cano, A., &Callejas, Z. (2023). Exploring folk songs to educate for resilience. On the Horizon: The International Journal of Learning Futures, 31(3/4), 133–146. https://doi.org/10.1108/OTH-10-2022-0064 [Google Scholar] [Crossref]
2. Al-Hoorie, A. H., &AlAwdah, A. A. K. (2024). Transdisciplinary integration for applied linguistics: the case of electrophysiology. Saudi Journal of Language Studies, 4(2), 97–105. https://doi.org/10.1108/SJLS-06-2024-0028 [Google Scholar] [Crossref]
3. AlJassmi, H., al Ahmad, M., & Ahmed, S. (2021a). Automatic recognition of labor activity: a machine learning approach to capture activity physiological patterns using wearable sensors. Construction Innovation, 21(4), 555–575. https://doi.org/10.1108/CI-02-2020-0018 [Google Scholar] [Crossref]
4. AlJassmi, H., al Ahmad, M., & Ahmed, S. (2021b). Automatic recognition of labor activity: a machine learning approach to capture activity physiological patterns using wearable sensors. Construction Innovation, 21(4), 555–575. https://doi.org/10.1108/CI-02-2020-0018 [Google Scholar] [Crossref]
5. AlRowais, R. K., &Alsaeed, D. (2023). Arabic stance detection of COVID-19 vaccination using transformer-based approaches: a comparison study. Arab Gulf Journal of Scientific Research, ahead-of-print(ahead-of-print). https://doi.org/10.1108/AGJSR-01-2023-0001 [Google Scholar] [Crossref]
6. Ann, L., & Aziz, Z. (2022). AVATARS MEET FACE-TO-FACE: Learning Leadership Online: A Thematic Analysis of East-African Perspectives. Journal of Leadership Education, 21(1), 13–32. https://doi.org/10.12806/V21/I1/R2 [Google Scholar] [Crossref]
7. Arthanarisamy Ramaswamy, M. P., &Palaniswamy, S. (2022). Subject independent emotion recognition using EEG and physiological signals – a comparative study. Applied Computing and Informatics, ahead-of-print(ahead-of-print). https://doi.org/10.1108/ACI-03-2022-0080 [Google Scholar] [Crossref]
8. BagićBabac, M. (2023). Emotion analysis of user reactions to online news. Information Discovery and Delivery, 51(2), 179–193. https://doi.org/10.1108/IDD-04-2022-0027 [Google Scholar] [Crossref]
9. Bellis, P., Magnanini, S., &Verganti, R. (2024). Dialogue for strategy implementation: how framing processes enable the evolution of new opportunities. Journal of Knowledge Management, 28(11), 1–32. https://doi.org/10.1108/JKM-01-2023-0064 [Google Scholar] [Crossref]
10. Bello-Salau, H., Aibinu, A. M., Onumanyi, A. J., Onwuka, E. N., Dukiya, J. J., &Ohize, H. (2018). New road anomaly detection and characterization algorithm for autonomous vehicles. Applied Computing and Informatics, 16(1/2), 223–239. https://doi.org/10.1016/j.aci.2018.05.002 [Google Scholar] [Crossref]
11. Bundi, D. N. (2024). Adoption of machine learning systems within the health sector: a systematic review, synthesis and research agenda. Digital Transformation and Society, 3(1), 99–120. https://doi.org/10.1108/DTS-06-2023-0041 [Google Scholar] [Crossref]
12. Chen, F., Chen, Z., Chen, Q., Gao, T., Dai, M., Zhang, X., & Sun, L. (2024). Research on motor rotation anomaly detection based on improved VMD algorithm. Railway Sciences, 3(1), 18–31. https://doi.org/10.1108/RS-12-2023-0047 [Google Scholar] [Crossref]
13. Chen, L., Xiong, L., Zhao, F., Ju, Y., &Jin, A. (2024). Research on blind source separation of operation sounds of metro power transformer through an Adaptive Threshold REPET algorithm. Railway Sciences, ahead-of-print(ahead-of-print). https://doi.org/10.1108/RS-07-2024-0026 [Google Scholar] [Crossref]
14. Combs, M., Hazelwood, C., & Joyce, R. (2022a). Are you listening? – an observational wake word privacy study. Organizational Cybersecurity Journal: Practice, Process and People, 2(2), 113–123. https://doi.org/10.1108/OCJ-12-2021-0036 [Google Scholar] [Crossref]
15. Combs, M., Hazelwood, C., & Joyce, R. (2022b). Are you listening? – an observational wake word privacy study. Organizational Cybersecurity Journal: Practice, Process and People, 2(2), 113–123. https://doi.org/10.1108/OCJ-12-2021-0036 [Google Scholar] [Crossref]
16. Cooper, M., Levy, Y., Wang, L., &Dringus, L. (2021). Heads-up! An alert and warning system for phishing emails. Organizational Cybersecurity Journal: Practice, Process and People, 1(1), 47–68. https://doi.org/10.1108/OCJ-03-2021-0006 [Google Scholar] [Crossref]
17. Das, A., &Mohanty, M. N. (2022). Design of ensemble recurrent model with stacked fuzzy ARTMAP for breast cancer detection. Applied Computing and Informatics, ahead-of-print(ahead-of-print). https://doi.org/10.1108/ACI-03-2022-0075 [Google Scholar] [Crossref]
18. Delgado-Ballester, E., López-López, I., & Bernal-Palazón, A. (2020). How harmful are online firestorms for brands? Spanish Journal of Marketing - ESIC, 24(1), 133–151. https://doi.org/10.1108/SJME-07-2019-0044 [Google Scholar] [Crossref]
19. Despotovic, M., Koch, D., Stumpe, E., Brunauer, W. A., &Zeppelzauer, M. (2023). Leveraging supplementary modalities in automated real estate valuation using comparative judgments and deep learning. Journal of European Real Estate Research, 16(2), 200–219. https://doi.org/10.1108/JERER-11-2022-0036 [Google Scholar] [Crossref]
20. Ding, Q., Ding, D., Wang, Y., Guan, C., & Ding, B. (2024). Unraveling the landscape of large language models: a systematic review and future perspectives. Journal of Electronic Business & Digital Economics, 3(1), 3–19. https://doi.org/10.1108/JEBDE-08-2023-0015 [Google Scholar] [Crossref]
21. Dodson, S. (2024). “Having just the right answer is almost as worthless as not having an answer’’: conceptualizing the information needs of undergraduate engineers. Journal of Documentation, 80(7), 246–266. https://doi.org/10.1108/JD-01-2024-0003 [Google Scholar] [Crossref]
22. Edirisinghe, R. (2019). Digital skin of the construction site. Engineering, Construction and Architectural Management, 26(2), 184–223. https://doi.org/10.1108/ECAM-04-2017-0066 [Google Scholar] [Crossref]
23. El-Sayed, W. M., El-Bakry, H. M., & El-Sayed, S. M. (2023). Integrated data reduction model in wireless sensor networks. Applied Computing and Informatics, 19(1/2), 41–63. https://doi.org/10.1016/j.aci.2019.03.003 [Google Scholar] [Crossref]
24. Foderaro, A., &Lorentzen, D. G. (2023). Argumentative practices and patterns in debating climate change on Twitter. Aslib Journal of Information Management, 75(1), 131–148. https://doi.org/10.1108/AJIM-06-2021-0164 [Google Scholar] [Crossref]
25. Fraiwan, M. (2022). Identification of markers and artificial intelligence-based classification of radical Twitter data. Applied Computing and Informatics, ahead-of-print(ahead-of-print). https://doi.org/10.1108/ACI-12-2021-0326 [Google Scholar] [Crossref]
26. Frau, M., Cabiddu, F., Frigau, L., Tomczyk, P., &Mola, F. (2023). How emotions impact the interactive value formation process during problematic social media interactions. Journal of Research in Interactive Marketing, 17(5), 773–793. https://doi.org/10.1108/JRIM-06-2022-0186 [Google Scholar] [Crossref]
27. Gain, U. (2018). The cognitive function and the framework of the functional hierarchy. Applied Computing and Informatics, 16(1/2), 81–116. https://doi.org/10.1016/j.aci.2018.03.003 [Google Scholar] [Crossref]
28. Giuggioli, G., Pellegrini, M. M., &Giannone, G. (2024). Artificial intelligence as an enabler for entrepreneurial finance: a practical guide to AI-driven video pitch evaluation for entrepreneurs and investors. Management Decision, ahead-of-print(ahead-of-print). https://doi.org/10.1108/MD-10-2023-1926 [Google Scholar] [Crossref]
29. Guan, Y., Li, S. E., Duan, J., Wang, W., & Cheng, B. (2018). Markov probabilistic decision making of self-driving cars in highway with random traffic flow: a simulation study. Journal of Intelligent and Connected Vehicles, 1(2), 77–84. https://doi.org/10.1108/JICV-01-2018-0003 [Google Scholar] [Crossref]
30. Guo, M., Wei, S., Han, C., Xia, W., Luo, C., & Lin, Z. (2024a). Prediction of surface roughness using deep learning and data augmentation. Journal of Intelligent Manufacturing and Special Equipment, 5(1), 221–241. https://doi.org/10.1108/JIMSE-10-2023-0010 [Google Scholar] [Crossref]
31. Guo, M., Wei, S., Han, C., Xia, W., Luo, C., & Lin, Z. (2024b). Prediction of surface roughness using deep learning and data augmentation. Journal of Intelligent Manufacturing and Special Equipment, 5(1), 221–241. https://doi.org/10.1108/JIMSE-10-2023-0010 [Google Scholar] [Crossref]
32. Jaakson, K., &Dedova, M. (2023). Do (gendered) ageism and ethnic minorities explain workplace bullying? International Journal of Manpower, 44(9), 199–215. https://doi.org/10.1108/IJM-10-2022-0492 [Google Scholar] [Crossref]
33. Jiang, Z., Xu, Z., Li, Y., Min, H., & Zhou, J. (2020). Precise vehicle ego-localization using feature matching of pavement images. Journal of Intelligent and Connected Vehicles, 3(2), 37–47. https://doi.org/10.1108/JICV-12-2019-0015 [Google Scholar] [Crossref]
34. Kejriwal, R., Garg, M., & Sarin, G. (2024). Predict financial text sentiment: an empirical examination. Vilakshan - XIMB Journal of Management, 21(1), 44–54. https://doi.org/10.1108/XJM-06-2022-0148 [Google Scholar] [Crossref]
35. Keronen, S., Lemmetty, S., & Collin, K. M. (2024). Construction of collective self-determination in development-oriented group discussions. Journal of Workplace Learning, 36(9), 88–105. https://doi.org/10.1108/JWL-05-2024-0110 [Google Scholar] [Crossref]
36. Khan, A., Zubair, S., & Khan, S. (2022). A systematic analysis of assorted machine learning classifiers to assess their potential in accurate prediction of dementia. Arab Gulf Journal of Scientific Research, 40(1), 2–24. https://doi.org/10.1108/AGJSR-04-2022-0029 [Google Scholar] [Crossref]
37. Lappeman, J., Franco, M., Warner, V., & Sierra-Rubia, L. (2022). What social media sentiment tells us about why customers churn.Journal of Consumer Marketing, 39(5), 385–403. https://doi.org/10.1108/JCM-12-2019-3540 [Google Scholar] [Crossref]
38. Ledro, C., Nosella, A., &Vinelli, A. (2022). Artificial intelligence in customer relationship management: literature review and future research directions. Journal of Business & Industrial Marketing, 37(13), 48–63. https://doi.org/10.1108/JBIM-07-2021-0332 [Google Scholar] [Crossref]
39. Liu, J., Luo, X., Li, L., Liu, F., Qiu, C., Fan, X., Dong, H., Li, R., & Liu, J. (2024). Research on the key techniques of composite processing of EDM and vibration ultrasonic drilling. Journal of Intelligent Manufacturing and Special Equipment, ahead-of-print(ahead-of-print). https://doi.org/10.1108/JIMSE-06-2024-0014 [Google Scholar] [Crossref]
40. Lorentzon, J. I., Fotoh, L. E., &Mugwira, T. (2024). Remote auditing and its impacts on auditors’ work and work-life balance: auditors’ perceptions and implications. Accounting Research Journal, 37(1), 1–18. https://doi.org/10.1108/ARJ-06-2023-0158 [Google Scholar] [Crossref]
41. Lyu, S. (2024). DeepFake the menace: mitigating the negative impacts of AI-generated content. Organizational Cybersecurity Journal: Practice, Process and People, 4(1), 1–18. https://doi.org/10.1108/OCJ-08-2022-0014 [Google Scholar] [Crossref]
42. Maguolo, G., Paci, M., Nanni, L., &Bonan, L. (2021a). Audiogmenter: a MATLAB toolbox for audio data augmentation. Applied Computing and Informatics, ahead-of-print(ahead-of-print). https://doi.org/10.1108/ACI-03-2021-0064 [Google Scholar] [Crossref]
43. Maguolo, G., Paci, M., Nanni, L., &Bonan, L. (2021b). Audiogmenter: a MATLAB toolbox for audio data augmentation. Applied Computing and Informatics, ahead-of-print(ahead-of-print). https://doi.org/10.1108/ACI-03-2021-0064 [Google Scholar] [Crossref]
44. Maity, A., Prakasam, P., & Bhargava, S. (2021). Robust dual-tone multi-frequency tone detection using k-nearest neighbour classifier for a noisy environment. Applied Computing and Informatics, ahead-of-print(ahead-of-print). https://doi.org/10.1108/ACI-10-2020-0105 [Google Scholar] [Crossref]
45. Mousumi, M. A. (2023). Access and equity: what do we know about government primary school students’ remote learning experience during school closures in Bangladesh? Journal of International Cooperation in Education, 25(1), 80–95. https://doi.org/10.1108/JICE-07-2022-0018 [Google Scholar] [Crossref]
46. Novac, A., &Bota, R. G. (2014). Transprocessing: a proposed neurobiological mechanism of psychotherapeutic processing. Mental Illness, 6(1), 20–35. https://doi.org/10.1108/mi.2014.5077 [Google Scholar] [Crossref]
47. Rantanen, A., Salminen, J., Ginter, F., & Jansen, B. J. (2020). Classifying online corporate reputation with machine learning: a study in the banking domain. Internet Research, 30(1), 45–66. https://doi.org/10.1108/INTR-07-2018-0318 [Google Scholar] [Crossref]
48. Rigamonti, E., Colaiacovo, B., Gastaldi, L., & Corso, M. (2024). HR analytics and the data collection process: the role of attributions and perceived legitimacy in explaining employees’ fear of datafication. Journal of Organizational Effectiveness: People and Performance, ahead-of-print(ahead-of-print). https://doi.org/10.1108/JOEPP-06-2023-0246 [Google Scholar] [Crossref]
49. Rita, P., Ramos, R. F., Moro, S., Mealha, M., &Radu, L. (2021). Online dating apps as a marketing channel: a generational approach. European Journal of Management and Business Economics, 30(1), 1–17. https://doi.org/10.1108/EJMBE-10-2019-0192 [Google Scholar] [Crossref]
50. Šandor, D., &BagićBabac, M. (2024). Sarcasm detection in online comments using machine learning. Information Discovery and Delivery, 52(2), 213–226. https://doi.org/10.1108/IDD-01-2023-0002 [Google Scholar] [Crossref]
51. Sibanda, V., Mpofu, K., & Trimble, J. (2021). Methodology for the design of a reconfigurable guillotine shear and bending press machine (RGS&BPM). Journal of Engineering, Design and Technology, 19(6), 1317–1343. https://doi.org/10.1108/JEDT-06-2020-0254 [Google Scholar] [Crossref]
52. Stark, J., Reif, J. A. M., &Schiebler, T. (2022). What leaders tell and employees hear – an intention-perception model of storytelling in leadership. Organization Management Journal, 19(2), 72–83. https://doi.org/10.1108/OMJ-02-2021-1156 [Google Scholar] [Crossref]
53. Tharwat, A. (2021). Independent component analysis: An introduction. Applied Computing and Informatics, 17(2), 222–249. https://doi.org/10.1016/j.aci.2018.08.006 [Google Scholar] [Crossref]
54. Touahri, I. (2022). The construction of an accurate Arabic sentiment analysis system based on resources alteration and approaches comparison. Applied Computing and Informatics, ahead-of-print(ahead-of-print). https://doi.org/10.1108/ACI-12-2021-0338 [Google Scholar] [Crossref]
55. Travassos, X. L., Avila, S. L., & Ida, N. (2021). Artificial Neural Networks and Machine Learning techniques applied to Ground Penetrating Radar: A review. Applied Computing and Informatics, 17(2), 296–308. https://doi.org/10.1016/j.aci.2018.10.001 [Google Scholar] [Crossref]
56. Uddin, S. F., Khan, A. A., Wajid, M., Singh, M., &Alam, F. (2021a). Performance evaluation of direction-finding techniques of an acoustic source with uniform linear array. Frontiers in Engineering and Built Environment, 1(2), 230–242. https://doi.org/10.1108/FEBE-09-2021-0045 [Google Scholar] [Crossref]
57. Uddin, S. F., Khan, A. A., Wajid, M., Singh, M., &Alam, F. (2021b). Performance evaluation of direction-finding techniques of an acoustic source with uniform linear array. Frontiers in Engineering and Built Environment, 1(2), 230–242. https://doi.org/10.1108/FEBE-09-2021-0045 [Google Scholar] [Crossref]
58. Wolfgruber, D. (2023). I’m only joking!(?) the role of disparaging humor in the communicative constitution of inclusion/exclusion in organizations. Equality, Diversity and Inclusion: An International Journal, 42(9), 35–55. https://doi.org/10.1108/EDI-08-2022-0223 [Google Scholar] [Crossref]
59. Xin, X., Jiao, Y., Zhang, Y., Liang, M., & Yao, Z. (2024). Research on noise reduction and data mining techniques for pavement dynamic response signals. Smart and Resilient Transportation, ahead-of-print(ahead-of-print). https://doi.org/10.1108/SRT-11-2023-0013 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Assessment of the Role of Artificial Intelligence in Repositioning TVET for Economic Development in Nigeria
- Teachers’ Use of Assure Model Instructional Design on Learners’ Problem Solving Efficacy in Secondary Schools in Bungoma County, Kenya
- “E-Booksan Ang Kaalaman”: Development, Validation, and Utilization of Electronic Book in Academic Performance of Grade 9 Students in Social Studies
- Analyzing EFL University Students’ Academic Speaking Skills Through Self-Recorded Video Presentation
- Major Findings of The Study on Total Quality Management in Teachers’ Education Institutions (TEIs) In Assam – An Evaluative Study