Efficacy of the Combination of Arrowroot Rhizome (Maranta Arundinacea L.), Neem Leaves (Azadirachta Indica A. Juss.), and Malunggay Leaves (Moringa Oleifera Lam.) as an Herbal Larvipod Against Aedes Aegypti Larvae
Authors
Pharmacy Department, St. Alexius College, Inc. (Philippines)
Pharmacy Department, St. Alexius College, Inc. (Philippines)
Pharmacy Department, St. Alexius College, Inc. (Philippines)
Pharmacy Department, St. Alexius College, Inc. (Philippines)
Pharmacy Department, St. Alexius College, Inc. (Philippines)
Article Information
DOI: 10.51584/IJRIAS.2025.1009000103
Subject Category: Education
Volume/Issue: 10/9 | Page No: 1043-1064
Publication Timeline
Submitted: 2025-09-10
Accepted: 2025-09-16
Published: 2025-10-25
Abstract
The Aedes aegypti is the primary vector that causes dengue worldwide. The goal of the study is to evaluate the combination of three plant extracts for its larvicidal activity. Arrowroot also contains various bioactive compounds typical of plants in the Marantaceae family, which may include phenolics and flavonoids, contributing to its potential health benefits and larvicidal properties in herbal formulations. Azadirachta indica A. Juss. (neem leaves) contained azadirachtin, a potent pesticidal compound, while Moringa oleifera Lam. (malunggay leaves) had flavonoids that contributed to larvicidal activity. This study evaluated the larvicidal effectiveness of combined extracts from these plants as an Herbal LarviPod at concentrations of 10%, 30%, 50%, and 70% over three varied time intervals. The study reported mortality rates of 56.66%, 60%, 70%, and 86.66% against I to IV instars of Aedes aegypti larvae after 48 hours. Larvicon achieved complete mortality, while PVA (polyvinyl alcohol) with excipients showed no mortality. The 70% Herbal LarviPod showed moderate cytotoxicity, resulting in 30 deaths among 30 brine shrimp after 24 hours. Complete dissolution of the PVA pod occurred after 48 hours, indicating effective distribution of the active ingredients. Cold storage (2-8°C) preserved Herbal LarviPod efficacy, while storage at 30-35°C caused degradation. In distilled water, the PVA film dissolved within 24 hours, and a similar timeline was observed with oils or stagnant water. Statistical analysis (two-way ANOVA and Tukey's HSD post-hoc test) showed no significant difference in larvicidal effectiveness between the Herbal LarviPod and the commercial Larvicon larvicide. The F- value was 0.658 with a p-value of 0.638, indicating that both performed similarly among treatments.
Keywords
Aedes aegypti, Larvicidal Pod, Azadirachta indica A. Juss. (neem leaves), Maranta arundinacea
Downloads
References
1. Aar Rafi Mahmud, Tanzila Ismail Ema, Mohd Faijanur-Rob Siddiquee, Asif Shahriar, Ahmed, H., Md Mosfeq-Ul-Hasan, Rahman, N., Islam, R., Muhammad Ramiz Uddin, & Rahaman, F. (2023). Natural flavonols: actions, mechanisms, and potential therapeutic utility for various diseases. Beni- Suef University Journal of Basic and Applied Sciences, 12(1). https://doi.org/10.1186/s43088-023-00387-4 [Google Scholar] [Crossref]
2. Abdullah, Z. W., & Dong, Y. (2019). Biodegradable and WaterResistant Poly(vinyl) Alcohol (PVA)/Starch (ST)/Glycerol (GL)/Halloysite Nanotube (HNT) Nanocomposite Films for Sustainable Food Packaging. Frontiers in Materials, 6. https://doi.org/10.3389/fmats.2019.00058 [Google Scholar] [Crossref]
3. Abenaim, L., & Conti, B. (2023b). Chitosan as a Control Tool for Insect Pest Management: A Review. Insects, 14(12), 949. https://doi.org/10.3390/insects14120949 [Google Scholar] [Crossref]
4. Acetic acid (ethanoic acid) - DCCEEW. (2022, June 30). https://www.dcceew.gov.au/environment/protection/npi/substan ces/fact-sheets/acetic-acid-ethanoic-acid [Google Scholar] [Crossref]
5. Adusei, Stephen, and Samuel Azupio. “Neem: A Novel Biocide for Pest and Disease Control of Plants.” Journal of Chemistry, vol. 2022, 17 Nov. 2022, p. e6778554, www.hindawi.com/journals/jchem/2022/6778554/, https://doi.org/10.1155/2022/6778554. [Google Scholar] [Crossref]
6. Aedes aegypti— Factsheet for experts. (2023, January 2). European Centre for Disease Prevention and Control. https://www.ecdc.europa.eu/en/disease- vectors/facts/mosquitofactsheets/aedes-aegypti. [Google Scholar] [Crossref]
7. Afaq Ahmad, Gul Zamin Khan, Misbah Ullah, Nazeer Ahmed, & Kamran Sohail. (2023). Evaluation of different high-dose aqueous plant extracts for the sustainable control of Aedes aegypti mosquitoes under laboratory conditions. Evaluation of Different High-Dose Aqueous Plant Extracts for the Sustainable Control of Aedes Aegypti Mosquitoes Under Laboratory Conditions. https://doi.org/10.1016/j.jksus. [Google Scholar] [Crossref]
8. Ali, S., Khan, M. R., Irfanullah, N., Sajid, M., & Zahra, Z. (2018). Phytochemical investigation and antimicrobial appraisal of Parrotiopsis jacquemontiana (Decne) Rehder. BMC Complementary and Alternative Medicine, 18(1). https://doi.org/10.1186/s12906-018-2114-z [Google Scholar] [Crossref]
9. Alonso-López, O., López-Ibáñez, S., & Beiras, R. (2021). Assessment of Toxicity and Biodegradability of Poly(vinyl alcohol)-Based Materials in Marine Water. Polymers, 13(21), 3742. https://doi.org/10.3390/polym13213742 [Google Scholar] [Crossref]
10. Alzohairy, M. A. (2016). Therapeutic Role of Azadirachta Indica (Neem) and Their Active Constituents in Disease Prevention and Treatment. Evidence-Based Complementary and Alternative Medicine, 2016, 1–11. https://doi.org/10.1155/2016/7382506 [11] Araj, S. A., Salem, N. M., Ghabeish, I. H., & Awwad, A. M. (2015). Toxicity of Nanoparticles against Drosophila melanogaster (Diptera: Drosophilidae). Journal of Nanomaterials, 2015(1). https://doi.org/10.1155/2015/758132 [Google Scholar] [Crossref]
11. Are detergent capsules biodegradable? (2024). The American Cleaning Institute (ACI). Retrieved November 15, 2024, from https://www.cleaninginstitute.org/pvoh Arrowroot (Maranta arundinacea) | Feedipedia. (2015). https://www.feedipedia.org/node/545#:~:text=Arrowroot%20is %20a%20perennial%20glabrous,Arrowroot%20is%20many%2 0branched [Google Scholar] [Crossref]
12. Aswini, B., Paramasivam, S., Sowndarya, S., & Chinnaiyan, U. (2023). In vitro antibacterial effect of the extracts of Maranta arundinacea rhizomes against selected pathogens. International Journal of Biosciences (IJB). https://doi.org/10.12692/ijb/22.5.160-167 [Google Scholar] [Crossref]
13. Avantor is setting science in motion for a better world | Avantor. (n.d.).https://www.avantorsciences.com/es/en/product/30004983/chito san-200-600-mpa-s-0-5-in-0-5-acetic-acid-20-c [Google Scholar] [Crossref]
14. Ballesteros-Mártinez, Lucio, et al. “Effect of Glycerol and Sorbitol Concentrations on Mechanical, Optical, and Barrier Properties of Sweet Potato Starch Film.” NFS Journal, vol. 20, Aug. 2020, pp. 1–9, https://doi.org/10.1016/j.nfs.2020.06.002.Accessed 25 Feb. 2021. [Google Scholar] [Crossref]
15. Baswa M, Rath CC, Dash S, Mishra R. Antibacterial activity of Karanj (Pongamia pinnata) and Neem (Azadirachta indica) seed oil: a preliminary report. Microbios. 2020;105(412):183-9. [Google Scholar] [Crossref]
16. Benahmed Djilali, A., Mehraz, R., Bouacem, K., Benseddik, A., Moualek, I., Nabiev, M., & Benzara, A. (2021). Bioactive Substances of Cydonia oblonga Fruit : Insecticidal Effect of Tannins on Tribolium confusum. International Journal of Fruit Science, 21(1), 721–731. https://doi.org/10.1080/15538362.2021.1926395 [Google Scholar] [Crossref]
17. Benelli, Giovanni, and Roman Pavela. “Beyond Mosquitoes— Essential Oil Toxicity and Repellency against Bloodsucking Insects.” Industrial Crops and Products, vol. 117, July 2018, pp. 382–392, www.sciencedirect.com/science/article/pii/S0926669018301857, https://doi.org/10.1016/j.indcrop.2018.02.072. Accessed 1 Oct. 2019. [Google Scholar] [Crossref]
18. Benelli, Giovanni, et al. “Neem (Azadirachta Indica): Towards the Ideal Insecticide? ” Natural Product Research, vol. 31, no. 4, 12 Aug. 2018, pp. 369–386, https://doi.org/10.1080/14786419.2016.1214834. [Google Scholar] [Crossref]
19. Beyond Pesticides. (2023, August 7). Regulators Ignore Mosquito Resistance to Pesticides, Promoting Disease Transmission - Beyond Pesticides Daily News Blog. Beyond Pesticides Daily News Blog. https://beyondpesticides.org/dailynewsblog/2023/08/regulatorsignore- mosquito-resistance-to-pesticides-promoting-diseasetransmission/ [Google Scholar] [Crossref]
20. Bharathithasan, M., Ravindran, D. R., Rajendran, D., Chun, S. K., Abbas, S. A., Sugathan, S., Yahaya, Z. S., Said, A. R., Oh, W., Kotra, V., Mathews, A., Amin, M. F. M., Ishak, I. H., & Ravi, R. (2021). Analysis of chemical compositions and larvicidal activity of nut extracts from Areca catechu Linn against Aedes (Diptera: Culicidae). PLoS ONE, 16(11), e0260281. https://doi.org/10.1371/journal.pone.0260281 [Google Scholar] [Crossref]
21. Boursier, C., Bosco, D., Coulibaly, A., & Negre, M. (n.d.). Are traditional neem extract preparations as efficient as a commercial formulation of Azadirachtin a? Crop Protection, 30(3), 318–322. https://doi.org/10.1016/j.cropro.2010.11.022 [Google Scholar] [Crossref]
22. Byrne, D., Boeije, G., Croft, I., Hüttmann, G., Luijkx, G., Meier, F., Parulekar, Y., & Stijntjes, G. (2021). Biodegradability of Polyvinyl Alcohol Based Film Used for Liquid Detergent Capsules. Tenside Surfactants Detergents, 58(2), 88–96. https://doi.org/10.1515/tsd-2020-2326 [Google Scholar] [Crossref]
23. Cao, J., Shi, T., Wang, H., Zhu, F., Wang, J., Wang, Y., Cao, F., & Su, E. (2023). Moringa oleifera leaf protein: Extraction, characteristics, and applications. Journal of Food Composition and Analysis, Volume 119, 105234.https://www.sciencedirect.com/science/article/abs/pii/S08891552 3001084#preview-section-abstract [Google Scholar] [Crossref]
24. Castro-López, C., Gonçalves, C., Ventura-Sobrevilla, J. M., Pastrana, L. M., Aguilar-González, C. N., & Martínez-Ávila, G. [Google Scholar] [Crossref]
25. C. G. (2020). Moringa oleifera—Storage Stability, In VitroSimulated Digestion and Cytotoxicity Assessment of microencapsulated extract. Processes, 8(7), 770. https://doi.org/10.3390/pr8070770 [Google Scholar] [Crossref]
26. CDC. (2024, September 27). How dengue spreads. Dengue Retrieved November 13, 2024 from https://www.cdc.gov/dengue/transmission/index.html [Google Scholar] [Crossref]
27. Centers for Disease Control and Prevention. (2019, September 26). How Dengue Spreads. CDC. https://www.cdc.gov/dengue/transmission/index.html [Google Scholar] [Crossref]
28. Chan, S. S., Khoo, K. S., Chew, K. W., Ling, T. C., & Show, P. L. (2022). Recent advances in biodegradation and biosorption of organic compounds from wastewater: microalgae-bacteria consortium—a review. Bioresource Technology, 344, 126159. https://doi.org/10.1016/j.biortech.2021.126159 [Google Scholar] [Crossref]
29. Chandrasekaran, R., Seetharaman, P., Krishnan, M., Gnanasekar, S., & Sivaperumal, S. (2018). Carica papaya (Papaya) latex: a new paradigm to combat against dengue and filariasis vectors Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). 3 Biotech, 8(2). https://doi.org/10.1007/s13205-018-1105-6 [Google Scholar] [Crossref]
30. Chatterjee, S., Sarkar, B., Bag, S., Debraj Biswal, Mandal, A., Bandyopadhyay, R., Sarkar, D., Chatterjee, A., & Saha, N. C. (2023). Mitigating the Public Health Issues Caused by the Filarial Vector, Culex quinquefasciatus (Diptera: Culicidae), Through Phytocontrol and Larval Source Marker Management. Applied Biochemistry and Biotechnology,63.https://doi.org/10.1007/s12010-023-04747-9 [Google Scholar] [Crossref]
31. Chaudhary, S. (2017). Progress on Azadirachta indica-based Biopesticides in Replacing Synthetic Toxic Pesticides. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.00610 [Google Scholar] [Crossref]
32. Chen, P., Xie, F., Tang, F., & McNally, T. (2020). Glycerol plasticisation of chitosan/carboxymethyl cellulose composites: Role of interactions in determining structure and properties. International Journal of Biological Macromolecules, 163, 683– 693. https://doi.org/10.1016/j.ijbiomac.2020.07.004 [Google Scholar] [Crossref]
33. Chousidis, N. (2024). Polyvinyl alcohol (PVA)-based films: insights from crosslinking and plasticizer incorporation. Engineering Research Express, 6(2), 025010. https://doi.org/10.1088/2631-8695/ad4cb4 [Google Scholar] [Crossref]
34. Cleveland Clinic. (2022). Dengue Fever: Symptoms, Causes,Diagnosis & Treatments. Cleveland Clinic. https://my.clevelandclinic.org/health/diseases/17753- denguefever [Google Scholar] [Crossref]
35. Cloy, R. (18 C.E., February 1). Azadirachtin & Neem Oil. Www.growertalks.com. https://www.growertalks.com/Article/?articleid=23465 [Google Scholar] [Crossref]
36. Control of Neglected Tropical Diseases (NTD). (2009, April 21). Dengue guidelines for diagnosis, treatment, prevention, and control. https://www.who.int/publications/i/item/9789241547871 [Google Scholar] [Crossref]
37. Controlling Mosquitoes at the Larval Stage | US EPA. (2024, March 12). US EPA. https://www.epa.gov/mosquitocontrol/controlling- mosquitoeslarval-stage [Google Scholar] [Crossref]
38. Cui, C., Yang, Y., Zhao, T., Zou, K., Peng, C., Cai, H., Wan, X., & Hou, R. (2019). Insecticidal Activity and Insecticidal Mechanism of Total Saponins from Camellia oleifera. Molecules, 24(24), 4518. https://doi.org/10.3390/molecules24244518 [Google Scholar] [Crossref]
39. Dang, Thuy Tien, et al. “Improving Properties of Chitosan/Polyvinyl Alcohol Films Using Cashew Nut Testa Extract: Potential Applications in Food Packaging.” Royal Society Open Science, vol. 11, no. 12, Dec. 2024, https://doi.org/10.1098/rsos.241236. [Google Scholar] [Crossref]
40. Das, B. K., Al-Amin, M. M., Russel, S. M., Kabir, S., Bhattacharjee, R., & Hannan, J. M. A. (2014, December). Phytochemical screening and evaluation of the analgesic activity of Oroxylum indicum. Retrieved November 15, 2024, from https://pmc.ncbi.nlm.nih.gov/articles/PMC4293694/#:~:text=Sal kowski%20test%20was%20used%20to,for%20the%20presence%20of%20terpenoids. [Google Scholar] [Crossref]
41. Dati, M. (2024, September 12). Gov. Tamayo continues to monitor dengue cases in South Cotabato - South Cotabato Official Website. South Cotabato Official Website. https://southcotabato.gov.ph/gov-tamayo-continues-to- monitordengue-cases-in-south-cotabato/ [Google Scholar] [Crossref]
42. Day, R., Bradberry, S. M., Thomas, S. H. L., & Vale, J. A. (2019). Liquid laundry detergent capsules (PODS): a review of their composition and mechanisms of toxicity and the circumstances, routes, features, and exposure management. Clinical Toxicology,57(11), 1053–1063. https://doi.org/10.1080/15563650.2019.1618466 [Google Scholar] [Crossref]
43. De Souza Wuillda, A. C. J., Martins, R. C. C., & Costa, F. D. N. (2019). Larvicidal Activity of Secondary Plant Metabolites in Aedes Aegypti Control: An Overview of the Previous 6 Years. Natural Product Communications, 14(7), 1934578X1986289. https://doi.org/10.1177/1934578x19862893 [Google Scholar] [Crossref]
44. Dengue Rising with Rain; Mosquitoes to Blame (2024, July 16). Department of Health. Retrieved November 11, 2024, from https://caro.doh.gov.ph [Google Scholar] [Crossref]
45. Dengue worldwide overview. (2025, March 3). European Centre for Disease Prevention and Control. https://www.ecdc.europa.eu/en/dengue-monthly [Google Scholar] [Crossref]
46. Duarte, J. L., Duchon, S., Di Filippo, L. D., Chorilli, M., & Corbel, V. (2024). Larvicidal properties of terpenoid-based nanoemulsions against the dengue vector Aedes aegypti L. and their potential toxicity against non-target organisms. PLoS ONE, 19(2), e0293124. https://doi.org/10.1371/journal.pone.0293124 Eaton, A. (2024). How Insecticides Work. https://extension.unh.edu/sites/default/files/migrated_unmanage d_files/Resource000504_Rep526.pdf [Google Scholar] [Crossref]
47. Europe PMC. (2024, August 23). Evaluating larvicidal, ovicidal and growth inhibiting activity of five medicinal plant extracts on Culex pipiens (Diptera: Culicidae), the West Nile virus vector. [Google Scholar] [Crossref]
48. Europepmc.org. https://europepmc.org/article/MED/39191818 [Google Scholar] [Crossref]
49. Ferreira, T. P., Haddi, K., Corrêa, R. F. T., Zapata, V. L. B., Piau, T. B., Souza, L. F. N., Santos, S. G., Oliveira, E. E., Jumbo, L. O. V., Ribeiro, B. M., Grisolia, C. K., Fidelis, R. R., Maia, A. M. S., & Aguiar, R. W. S. (2019). Prolonged mosquitocidal activity of Siparuna guianensis essential oil encapsulated in chitosan nanoparticles. PLoS Neglected Tropical Diseases, 13(8), e0007624. https://doi.org/10.1371/journal.pntd.0007624 [Google Scholar] [Crossref]
50. Fink, R., & Filip, S. (2022). Surface-active natural saponins. Properties, safety, and efficacy. International Journal of Environmental Health Research, Issue 7, 1–10. https://doi.org/10.1080/09603123.2022.2043252 [Google Scholar] [Crossref]
51. Gabieta, A. E. J. (2024, November 6). Dengue cases climb in Soccsksargen, Eastern Visayas. INQUIRER.net. https://newsinfo.inquirer.net/2001542/dengue-cases-climb- insoccsksargen-eastern-visayas [Google Scholar] [Crossref]
52. Ganeshan Petchidurai, Kitherian Sahayaraj, Al-Shuraym, L. A., Albogami, B. Z., & Sayed, S. M. (2023). Insecticidal Activity of Tannins from Selected Brown Macroalgae against the Cotton Leafhopper Amrasca devastans. Plants, 12(18), 3188–3188. https://doi.org/10.3390/plants12183188 [Google Scholar] [Crossref]
53. Garjito, T. A., Susanti, L., Mujiyono, M., Prihatin, M. T., Susilo, D., Nugroho, S. S., Mujiyanto, M., Wigati, R. A., Satoto, [Google Scholar] [Crossref]
54. T. B. T., Manguin, S., Gavotte, L., & Frutos, R. (2021). Assessment of mosquito collection methods for dengue surveillance. Frontiers in Medicine, 8. https://doi.org/10.3389/fmed.2021.685926 [Google Scholar] [Crossref]
55. Gazi University Journal of Science Part A: Engineering and Innovation. (2024). Retrieved November 15, 2024, from https://dergipark.org.tr/en/pub/gujsa [Google Scholar] [Crossref]
56. Getachew, D., Tekie, H., Gebre-Michael, T., Balkew, M., & Mesfin, A. (2015). Breeding Sites ofAedes aegypti: Potential Dengue Vectors in Dire Dawa, East Ethiopia. Interdisciplinary Perspectives on Infectious Diseases, 2015, 1–8. https://doi.org/10.1155/2015/706276 [Google Scholar] [Crossref]
57. Gopalakrishnan, L., Doriya, K., & Kumar, D. S. (2016). Moringa oleifera: A review on nutritive importance and its medicinal application. Food Science and Human Wellness, 5(2), 49–56. https://doi.org/10.1016/j.fshw.2016.04.001 [Google Scholar] [Crossref]
58. Hao, S., Gestrich, J., Zhang, X., Xu, M., Wang, X., Liu, L., & Wei, H. (2021). Neurotransmitter Affect Larval Development by Regulating the Activity of Prothoracicotropic HormoneReleasing Neurons in Drosophila melanogaster. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.653858 [Google Scholar] [Crossref]
59. Harpaz, D., Axelrod, T., Yitian, A., Eltzov, E., Marks, R., & Tok, A. (2019). Dissolvable Polyvinyl-Alcohol Film, a Time- Barrier to modulate sample flow in a 3D-Printed holder for capillary flow paper diagnostics. Materials, 12(3), 343.https://doi.org/10.3390/ma12030343 [Google Scholar] [Crossref]
60. Hartmann, J., & Asch, F. (2019). Extraction, storage duration, and storage temperature affect the activity of ascorbate peroxidase, glutathione reductase, and superoxide dismutase in rice tissue. Biology, 8(4), 70. https://doi.org/10.3390/biology8040070 How dengue spreads. (2025, January 30). Dengue.https://www.cdc.gov/dengue/transmission/index.html#:~:text=b ecome%20infected%20with%20dengue%20virus [Google Scholar] [Crossref]
61. Huang, Q., Liu, X., Zhao, G., Hu, T., & Wang, Y. (2017). Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Animal Nutrition, 4(2), 137–150. https://doi.org/10.1016/j.aninu.2017.09.004 [Google Scholar] [Crossref]
62. India. (2022). VECTOR OF DENGUE FEVER: National Center for Vector-Borne Diseases Control (NCVBDC). Mohfw.gov.in. https://ncvbdc.mohfw.gov.in/index4.php?lang=1&level=0&lid= 3719&linkid=449 [Google Scholar] [Crossref]
63. Jamali, Abdul Rauf, et al. “AGILE PROJECT MANAGEMENT: ENHANCING FLEXIBILITY AND EFFICIENCY THROUGH ARTIFICIAL INTELLIGENCE.” [Google Scholar] [Crossref]
64. International Research Jayakumar, A., & Suganthi, A. (2017). Biochemical and phytochemical analysis of Maranta arundinacea (L.) rhizome. International Journal of Research in Pharmacy and Pharmaceutical Sciences, Volume 2; Issue 3(2455-698X), Page No. 26-30. https://www.researchgate.net/profile/Suganthi- Arunachalam/publication/331673901_2-3-17- 714/links/5c877eb4299bf1e02e289b8f/2-3-17-714.pdf [Google Scholar] [Crossref]
65. Jamasri, et al. “Mechanical, Physical, and Thermal Characterization of PV (Polyvinyl Alcohol)/Chitosan Bioplastic Film.” International Journal of Heat and Technology, vol. 41, no. 3, 30 June 2023, pp. 687–693, https://doi.org/10.18280/ijht.410322. Accessed 7 Jan. 2024. [Google Scholar] [Crossref]
66. Jayani, N. I. E., Hean, M. R., Krisnayanthi, N. L. A., Islamie, R., Rani, K. C., & Parfati, N. (2022). Evaluation of stability and quality characteristics of moringa (Moringa oleifera) herbal tea during storage. Food Research 6 (4): 399-406 (August 2022). https://doi.org/10.26656/fr.2017.6(4).568 [Google Scholar] [Crossref]
67. Johnson, I. (2014). Cancer prevention. In Elsevier eBooks. https://doi.org/10.1016/b978-0-12-801238-3.00239-7 [Google Scholar] [Crossref]
68. Karssing, S. (2024, March 19). The Power of Moringa Leaves as a Natural Pesticide Alternative. Zylem. https://zylemsa.co.za/blog/the-power-of-moringa-leaves-as- anatural-pesticide-alternative/ [Google Scholar] [Crossref]
69. Kenton, W. (2025, May 3). What is analysis of variance (ANOVA)? Investopedia. https://www.investopedia.com/terms/a/anova.asp [Google Scholar] [Crossref]
70. Khursheed, Aadil, et al. “Plant-Based Natural Products as Potential Ecofriendly and Safe Biopesticides: A Comprehensive Overview of Their Advantages over Conventional Pesticides, Limitations, and Regulatory Aspects.” Microbial Pathogenesis, vol. 173, 1 Dec. 2022, p. 105854, www.sciencedirect.com/science/article/abs/pii/S088240102200 4673, https://doi.org/10.1016/j.micpath.2022.105854. [Google Scholar] [Crossref]
71. Kilani-Morakchi, S., Morakchi-Goudjil, H., & Sifi, K. (2021). Azadirachtin-Based Insecticide: Overview, Risk Assessments, and Future Directions. Frontiers in Agronomy, 3. https://doi.org/10.3389/fagro.2021.676208 [Google Scholar] [Crossref]
72. Kovtun, Ganna, et al. “Influence of Glycerol on the Surface Morphology and Crystallinity of Polyvinyl Alcohol Films.” Polymers, vol. 16, no. 17, 27 Aug. 2024, pp. 2421–2421, pmc.ncbi.nlm.nih.gov/articles/PMC11397623/, https://doi.org/10.3390/polym16172421. [Google Scholar] [Crossref]
73. Kumar, A., P, N., Kumar, M., Jose, A., Tomer, V., Oz, E., Proestos, C., Zeng, M., Elobeid, T., K, S., & Oz, F. (2023). Major Phytochemicals: Recent Advances in Health Benefits and Extraction Methods. Molecules, 28(2), 887. https://doi.org/10.3390/molecules28020887 [Google Scholar] [Crossref]
74. Kusmiyati, K., Rahmawati, E., Mauguru, E. M., Waangsir, F. W. F., & Selasa, P. (2023, January 26). The Potency of Moringa oleifera Leaf Extract as Larvicide for Aedes aegypti. Kusmiyati [Google Scholar] [Crossref]
75. Journal of Global Environmental Dynamics. https://jurnal.uns.ac.id/jged/article/view/64274 Lamaningao, P., Kanda, S., Shimono, T., Inthavongsack, S., Xaypangna, T., & Nishiyama, T. (2020). Aedes mosquito surveillance and the use of a larvicide for vector control in a rural area of the Lao People’s Democratic Republic. Tropical Medicine and Health, 48(1). https://doi.org/10.1186/s41182- 020-00242-7 [Google Scholar] [Crossref]
76. Lara, Rocha, B. L., Teixeira, C. C., Martins, H. C., Silveira, C. A., Albuquerque, B., Sander, A., He, P., Raimundo, Maria, A., Smagghe, G., & Oliveira, E. E. (2024). Preparation of βMyrcene-Chitosan Nanoparticles and Their Uptake and Toxicity in Aedes aegypti Larvae. Insects, 15(12), 998–998. https://doi.org/10.3390/insects15120998 [Google Scholar] [Crossref]
77. Larvicides. (2024, May 14). Mosquitoes. https://www.cdc.gov/mosquitoes/mosquitocontrol/larvicides.html [Google Scholar] [Crossref]
78. Larvicon-Leads Environmetal Health. (2021, October 3). Larvicon -leads Environmet Health. https://leadseh.com/product/larvicon/ [Google Scholar] [Crossref]
79. Lengai, G. M. W., Muthomi, J. W., & Mbega, E. R. (2020). Phytochemical activity and the role of botanical pesticides in pest management for sustainable agricultural crop production. Scientific African, 7,e00239. https://doi.org/10.1016/j.sciaf.2019.e00239 [Google Scholar] [Crossref]
80. Liu, B., Zhang, J., & Guo, H. (2022). Research Progress of Polyvinyl Alcohol Water-Resistant Film Materials. Membranes, 12(3), 347. https://doi.org/10.3390/membranes12030347 [Google Scholar] [Crossref]
81. Liu, B., Zhang, J., & Guo, H. (2022). Research Progress of Polyvinyl Alcohol Water-Resistant film Materials. Membranes, 12(3), 347. https://doi.org/10.3390/membranes12030347 [Google Scholar] [Crossref]
82. Liu, J., Zhang, M., Fu, W., Hu, J., & Dai, G. (2018). Efficacy of bioactive compounds from Curcuma longa L. against mosquito larvae. Journal of Applied Entomology, 142(8), 792–799. https://doi.org/10.1111/jen.12527 [Google Scholar] [Crossref]
83. Loh, Y. M., Su, M. P., Ellis, D. S., & Andrés, M. (2023). The auditory efferent system in mosquitoes. Frontiers in Cell and Developmental Biology,https://doi.org/10.3389/fcell.2023.1123738 [Google Scholar] [Crossref]
84. Maharshi, D. (2024). LinkedIn. Linkedin.com. https://www.linkedin.com/pulse/essentials-effective- moringaintegrated-pest-plan-dp-maharshi [Google Scholar] [Crossref]
85. Malki, M. K. S., Wijesinghe, J. A. A. C., Ratnayake, R. H. M. K., & Thilakarathna, G. C. (2023). Characterization of arrowroot (Maranta arundinacea) starch as a potential starch source for the food industry. Heliyon, 9(9), e20033. https://doi.org/10.1016/j.heliyon.2023.e20033 [Google Scholar] [Crossref]
86. Mandal, P., & Chandra, G. (2024). Casearia tomentosa fruit extracts exposed larvicidal activity and morphological alterations in Culex quinquefasciatus and Aedes albopictus under in vitro and semi-field conditions. BMC Research Notes, 17(1). https://doi.org/10.1186/s13104-023-06663-x [Google Scholar] [Crossref]
87. Manzano, P., García, O. V., Malusín, J., Villamar, J., Quijano, M., Viteri, R., Barragán, A., & Orellana-Manzano, A. (2020). Larvicidal activity of ethanolic extract of Azadirachta indica against Aedes aegypti larvae. Revista Facultad Nacional de Agronomía Medellín, 73(3), 9315–9320. https://www.redalyc.org/journal/1799/179964927009/html/ [Google Scholar] [Crossref]
88. Marcus, A. C., & Nwineewii, J. D. (2015). Studies on the crude extract of Moringa oleifera leaf for preliminary identification of some phytochemicals and organic functions. IOSR Journal of Applied Chemistry (IOSR-JAC), Volume 8 (Issue 12 Ver. II), PP 01-05. https://doi.org/10.9790/5736-081220105 [Google Scholar] [Crossref]
89. Marques, A., & Kaplan, M. a. C. (2014). Active metabolites of the genus Piper against Aedes aegypti: natural alternative sources for dengue vector control. Universitas Scientiarum, 20(1), 61. https://doi.org/10.11144/javeriana.sc20-1.amgp [Google Scholar] [Crossref]
90. Milugo, T. K., Tchouassi, D. P., Kavishe, R. A., Dinglasan, R. R., & Torto, B. (2021). Naturally occurring compounds with larvicidal activity against malaria mosquitoes. Frontiers in Tropical Diseases, 2. https://doi.org/10.3389/fitd.2021.718804 [Google Scholar] [Crossref]
91. Monalisha, S., Padan Kumar, J., Sujata, M., & Tilothama, B. (2023). Comparative analysis of nutritional and antimicrobial activity of Curcuma angustifolia (Roxb.) and Maranta arundinacea (L.). Biological Forum – an International Journal. https://www.researchtrend.net/bfij/pdf/Comparative-Analysisof- Nutritional-and-Antimicrobial-Activity-of-Curcumaangustifolia-(Roxb.)-and-Maranta-arundinacea-(L.)-BhotraTilothama-88.pdf [Google Scholar] [Crossref]
92. MonoSol. (2024, May 15). What is PVA? MonoSol. https://www.monosol.com/about-pva/Journal of Modernization in Engineering Technology and Science, vol. 1, no. 10.20944/preprints202307. 0618.v1, 5 Oct. 2024, https://doi.org/10.56726/irjmets61910. Accessed 8 Oct. 2024. [Google Scholar] [Crossref]
93. Montemayor, Ma. T. (2024, July 1). DOH: Dengue cases 15% higher in 2024 1H. Philippine News Agency. Retrieved November 11, 2024, from https://www.pna.gov.ph/articles/1228003 [Google Scholar] [Crossref]
94. Moyes, C. L., Vontas, J., Martins, A. J., Ng, L. C., Koou, S. Y., Dusfour, I., Raghavendra, K., Pinto, J., Corbel, V., David, J., & Weetman, D. (2017). Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Neglected Tropical Diseases, 11(7), e0005625. https://doi.org/10.1371/journal.pntd.0005625 [Google Scholar] [Crossref]
95. N, E. N., Domínguez-Martín, E. M., Roberto, A., Tavares, J., Isca, V. M. S., Pereira, P., Cebola, M., & Rijo, P. (2020). Artemia species: An Important Tool to Screen General Toxicity Samples. Current Pharmaceutical Design, 26(24), 2892–2908. https://doi.org/10.2174/1381612826666200406083035 [Google Scholar] [Crossref]
96. Nakase, T., Giovanetti, M., Obolski, U., & Lourenço, J. (2024). Population at risk of dengue virus transmission has increased due to coupled climate factors and population growth. Communication Earth &Environment, 5(1). https://doi.org/10.1038/s43247-024-01639-6 [Google Scholar] [Crossref]
97. Narayana C, Pal R, Roy S. Effect of pre-storage treatments and temperature regimes on shelf-life and respiratory behaviour of ripe Baneshan mango. 2018. Retrieved: https://sdiopr.s3.apsouth- 1.amazonaws.com/2024/Dec/06_Dec_24/2024_JABB_126858/ Revised-ms_JABB_126858_v1.pdf [Google Scholar] [Crossref]
98. Nawarathne, M. P., & Dharmarathne, C. (2024). Control of dengue larvae of Aedes aegypti and Aedes albopictus using the larvicidal bioactive compounds in different plant extracts and plant extract-mediated nanoparticles. Tropical Medicine and Health, 52(1). https://doi.org/10.1186/s41182-024-00654-9 [Google Scholar] [Crossref]
99. Negri, A., Pezzali, G., Pitton, S., Piazzoni, M., Soresinetti, L., Naro, G., Gabrieli, P., Bettoni, G., Bandi, C., Caccia, S., & Epis, S. (2024). The bio-larvicide Bacillus thuringiensis var. israelensis is effective against Aedes koreicus, either dissolved in water or delivered through eco-compatible chitosan-based hydrogels. Current Research in Parasitology and Vector-Borne Diseases, 6, 100197. https://doi.org/10.1016/j.crpvbd.2024.100197 [Google Scholar] [Crossref]
100. Nogueira, G. F., Fakhouri, F. M., & De Oliveira, R. A. (2018). Extraction and characterization of arrowroot (Maranta arundinaceae L.) starch and its application in edible films. Carbohydrate Polymers, 186, 64–72. https://doi.org/10.1016/j.carbpol.2018.01.024 [Google Scholar] [Crossref]
101. Ojewumi, M. E., Obanla, O. R., & Atauba, D. M. (2021). A review on the efficacy of Ocimum gratissimum, Mentha spicata, and Moringa oleifera leaf extracts in repelling mosquitoes. BeniSuef University Journal of Basic and Applied Sciences, 10(1). https://doi.org/10.1186/s43088-021-00176-x [Google Scholar] [Crossref]
102. Opoggen, L., Rotimi, J., & Aigbodion, F. I. (2019). Larvicidal activity of some tropical plants on the mortality of Anopheles gambiae s.l mosquitoes. GSC Biological and Pharmaceutical Sciences, 9(1), 024–031. https://doi.org/10.30574/gscbps.2019.9.1.0174 [Google Scholar] [Crossref]
103. Othman, N., & Ismail, H. (2014, October 14). Biodegradation studies of polyvinyl Alcohol/Corn starch blend films in solid and solution media. Researchgate. Retrieved May 24, 2025, from https://www.researchgate.net/publication/266501577_Biodegra dation_Studies_of_Polyvinyl_AlcoholCorn_Starch_Blend_Fil m s_in_Solid_and_Solution_Media [Google Scholar] [Crossref]
104. Pan American Health Organization. (2024). Dengue - PAHO/WHO | Pan American Health Organization. Www.paho.org. https://www.paho.org/en/topics/dengue [Google Scholar] [Crossref]
105. Parisi, E. I., Bonelli, N., Carretti, E., Giorgi, R., Ingo, G. M., & Baglioni, P. (2017). Film forming PVA-based cleaning systems for the removal of corrosion products from historical bronzes. Pure and Applied Chemistry, 90(3), 507–522. https://doi.org/10.1515/pac-2017-0204 [Google Scholar] [Crossref]
106. Pavela, R., Maggi, F., Iannarelli, R., & Benelli, G. (2019). Plant extracts for developing mosquito larvicides: from laboratory to the field, with insights on the modes of action. Acta Tropica, 193, 236–271. https://doi.org/10.1016/j.actatropica.2019.01.019 [Google Scholar] [Crossref]
107. Perez, A. (2024, November 20). Dengue cases up 30 percent in recent weeks, with 233 deaths: DOH ABS-CBN News. ABSCBN.https://www.abs-cbn.com/news/2024/7/16/dengue- casesup-30-percent-in-recent-weeks-with-233-deaths-doh-1657 [Google Scholar] [Crossref]
108. Perez, R. M., Endaya, R. J. T., Mohammad, F. S., & Sepe, M. C. (2020). Larvicidal Property of the Acidified Chitosan from Marine Crab Shell Wastes against Aedes aegypti. Asian Journal of Biological and Life Sciences, 9(2), 145–151. https://doi.org/10.5530/ajbls.2020.9.22 [Google Scholar] [Crossref]
109. Piazzoni, M., Negri, A., Brambilla, E., Giussani, L., Pitton, S., Caccia, S., Epis, S., Bandi, C., Locarno, S., & Lenardi, C. (2022). Biodegradable floating hydrogel baits as larvicide delivery systems against mosquitoes. Soft Matter, 18(34), 6443–6452. https://doi.org/10.1039/d2sm00889k [Google Scholar] [Crossref]
110. Piplani, M., Bhagwat, D. P., Singhvi, G., Sankaranarayanan, M., Balana-Fouce, R., Vats, T., & Chander, S. (2019). Plant- based larvicidal agents: An overview from 2000 to 2018. Experimental Parasitology, 199, 92-103.https://doi.org/10.1016/j.exppara.2019.02.014 [Google Scholar] [Crossref]
111. POLYVA. (2019). casting water soluble pva pvoh plastic film for laundry pods-POLYVA. Polyva-Pvafilm.com. https://www.polyva-pvafilm.com/casting-water-soluble- pvapvoh-plastic-film-for-laundry-pods-6599.html [Google Scholar] [Crossref]
112. POLYVA. (2024, December 9). Solubility testing and standards for water soluble films Polyva- Pvafilm.com.https://www.polyva-pvafilm.com/a-news- solubility-testing-andstandards-for-water-soluble-films [Google Scholar] [Crossref]
113. Potential range of Aedes mosquitoes. (2024, July 1). Mosquitoes.https://www.cdc.gov/mosquitoes/php/toolkit/potential- range-ofaedes.htm [Google Scholar] [Crossref]
114. Prates, L. H. F., Fiebig, J., Schlosser, H., Liapi, E., Rehling, T., Lutrat, C., Bouyer, J., Sun, Q., Wen, H., Xi, Z., Schetelig, M. F., & Häcker, I. (2024). Challenges of Robust RNAi-Mediated Gene Silencing in Aedes Mosquitoes. International Journal of Molecular Sciences. https://www.mdpi.com/1422- 0067/25/10/5218 [Google Scholar] [Crossref]
115. Proudly. (2024, April 18). How to store laundry pods. Jiangmen Proudly Water-soluble Plastic Co., Ltd.https://www.watersolubleplastics.com/a-news-how-to- storelaundry-pods. [Google Scholar] [Crossref]
116. Qin, Y., Yun, D., Xu, F., Li, C., Chen, D., & Liu, J. (2021).Impact of storage conditions on the structure and functionality of starch/polyvinyl alcohol films containing Lycium ruthenicum anthocyanins. Food Packaging and Shelf Life, 29, 100693. https://doi.org/10.1016/j.fpsl.2021.100693 [Google Scholar] [Crossref]
117. Quejano, Eymard, et al. “FABRICATION and CHARACTERIZATION of CHITOSAN-COATED-POLYVINYL ALCOHOLCOMPOSITE FILM | Philippine Engineeri ng Journal.”Upd.edu.ph, 2025, journals.upd.edu.ph/index.php/pej/article/view/3472. [Google Scholar] [Crossref]
118. Rahimah, S. B., Djunaedi, D. D., Soeroto, A. Y., & Bisri, T. (2019). The the phytochemical screening, total phenolic contents and antioxidant activities in vitro of white oyster mushroom (Pleurotus ostreatus) preparations. Open Access Macedonian Journal of Medical Sciences, 7(15), 2404–2412. https://doi.org/10.3889/oamjms.2019.741 [Google Scholar] [Crossref]
119. Rai, S., Acharya-Siwakoti, E., Kafle, A., Devkota, H. P., & Bhattarai, A. (2021). Plant-Derived Saponins: A Review of Their Surfactant Properties and Applications. Sci, 3(4), 44. https://doi.org/10.3390/sci3040044 [Google Scholar] [Crossref]
120. Rasika Dalpadado, Deepika Amarasinghe, & Nayana Gunathilaka. (2022). Https://www.sciencedirect.com/science/article/ABS/PII/S0001 706X22000389. Water Quality Characteristics of Breeding Habitats in Relation to the Density of Aedes Aegypti and Aedes Albopictus in Domestic Settings in Gampaha District of Sri Lanka, 229(106339) https://doi.org/10.1016/j.actatropica.2022.106339 [Google Scholar] [Crossref]
121. Sahira Banu, K., & Cathrine, L. (2015). General techniques involved in phytochemical analysis. International Journal of Advanced Research in Chemical Science (IJARCS), Volume 2(Issue 4), ISSN 2349-0403.https://www.arcjournals.org/pdfs/ijarcs/v2-i4/5.pdf Sakka, M. K., Ioannou, C. S., Papadopoulos, N. T., & Athanassiou, C. G. (2023). Residual efficacy of selected larvicides against Culex pipiens pipiens (Diptera: Culicidae) under laboratory and semi-field conditions. Environmental Science and Pollution Research, 30(14), 40931–40941. https://doi.org/10.1007/s11356-022-24654-6 [Google Scholar] [Crossref]
122. Saleem, Sumaira, et al. “A Comprehensive Review of Phytochemical Profile, Bioactives for Pharmaceuticals, and Pharmacological Attributes OfAzadirachta Indica.” Phytotherapy Research, vol. 32, no. 7, 19 Apr. 2018, pp. 1241–1272, https://doi.org/10.1002/ptr.6076. [Google Scholar] [Crossref]
123. Samada, L. H., & Tambunan, U. S. F. (2020). Biopesticides as Promising Alternatives to Chemical Pesticides: A Review of Their Current and Future Status. OnLine Journal of Biological Sciences 20(2), 66–76. https://doi.org/10.3844/ojbsci.2020.66.76 [Google Scholar] [Crossref]
124. Šamec, D., Karalija, E., Šola, I., Vujčić Bok, V., & SalopekSondi, B. (2021). The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants, 10(1), 118. https://doi.org/10.3390/plants10010118 [Google Scholar] [Crossref]
125. Santoso, J., Adiputra, K. C., Soerdirga, L. C., & Tarman, K. (2020). Effect of acetic acid hydrolysis on the characteristics of water soluble chitosan. IOP Conference Series Earth and Environmental Science, 414(1),012021. https://doi.org/10.1088/1755-1315/414/1/012021 [Google Scholar] [Crossref]
126. Sarkar, S., Singh, R. P., & Bhattacharya, G. (2021). Exploring the role of Azadirachta indica (neem) and its active compounds in the regulation of biological pathways: an update on molecula approach. 3 Biotech,11(4). https://doi.org/10.1007/s13205-021-02745-4 [Google Scholar] [Crossref]
127. Saxena, R. (2015, June 15). Neem for Sustainable Pest Management and Environmental Conservation. ECHOcommunity. https://www.echocommunity.org/en/resources/d7cd259f-eb9e- 4a04-bc17-b26bdaf7e42d [Google Scholar] [Crossref]
128. Schmutterer, Heinrich. “The Neem Tree : Azadirachta Indica Juss. And Other Meliaceous Plants : Sources of Unique Natural Products for Integrated Pest Management, Medicine, Industry and Other Purposes.” (No Title), 2024, p. -, cir.nii.ac.jp/crid/1130000794308272128. Accessed 2 Mar. 2025. [130] Scitable. (2011). Dengue Transmission. Nature.com.https://www.nature.com/scitable/topicpage/denguet ransmission-22399758/. [Google Scholar] [Crossref]
129. Şengül Demirak, M. Ş., & Canpolat, E. (2022). Plant-Based Bioinsecticides for Mosquito Control: Impact on Insecticide Resistance and Disease Transmission. Insects, 13(2), 162. https://doi.org/10.3390/insects13020162 [Google Scholar] [Crossref]
130. Seriana, I., Akmal, M., Darusman, Wahyun, S., Khairan, K., & Sugito. (2021). Phytochemical Characterizations Of Neem (Azadirachta indica A. Juss) Leaves Ethanolic Extract: An Important Medical Plant As Male Contraceptives Candidate. Vol.14(0974–1496), 343–350. https://rasayanjournal.co.in/admin/php/upload/3075_pdf.pdf [Google Scholar] [Crossref]
131. Shadrach, A. U., Kenneth, O. C., Kalu, A. U., & Francis, A. (2018). Larvicidal activity of crude seed and leaf neem extracts (Azadirachta indica) against mosquito larvae in Kogi, north central Nigeria. American Journal of Microbiology and Biotechnology, Vol. 5, No. 1, 12–17. https://www.researchgate.net/publication/324439284_Activity_ of_Crude_Seed_and_Leaf_Neem_Extracts_Azadirachta_indica Against_Mosquito_Larvae_in_Kogi [Google Scholar] [Crossref]
132. Shahbaz, M., Imran, M., Alsagaby, S. A., Naeem, H., Waleed Al Abdulmonem, Hussain, M., Abdelgawad, M. A., El Ghorab, A. H., Ghoneim, M. M., El Sherbiny, M., Ayomide Victor Atoki, & Chinaza Godswill Awuchi. (2023). Anticancer, antioxidant, ameliorative, and therapeutic properties of kaempferol. International Journal of Food Properties, 26(1), 1140–1166. https://doi.org/10.1080/10942912.2023.2205040 [Google Scholar] [Crossref]
133. Shobha, R., Rajeshwari, C., & Andallu, B. (2014). Oxidative stress and antioxidant herbs and spices in cancer prevention. In Elsevier eBooks (pp. 91–100). https://doi.org/10.1016/b978-0- 12-405205-5.00009-x [Google Scholar] [Crossref]
134. Smith, R., & Lee, T. (2020). Effects of exposure time and concentration on larval mortality: An analysis of variance approach. Journal of Vector Ecology, 45(1), 50-58. https://doi.org/10.1111/jvec.2020.45.issue-1 [Google Scholar] [Crossref]
135. Sona, C. L., Arumugam, T., Balakumbahan, R., & Anitha, T. (2021). Effect of storage conditions on nutritional quality of Moringa value added products. Deleted Journal, 10(11), 947– 953. https://www.thepharmajournal.com/archives/2021/vol10issue11 /PartN/10-10-421-480.pdf [Google Scholar] [Crossref]
136. Song, Y., Zhang, S., Kang, J., Chen, J., & Cao, Y. (2021). Water absorption dependence of the formation of poly(vinyl alcohol)iodine complexes for poly(vinyl alcohol) films. RSC Advances, 11(46), 28785–28796. https://doi.org/10.1039/d1ra04867h [Google Scholar] [Crossref]
137. Souto, A. L., Sylvestre, M., Tölke, E. D., Tavares, J. F., BarbosaFilho, J. M., & Cebrián-Torrejón, G. (2021). Plant- Derived Pesticides as an Alternative to Pest Management and Sustainable Agricultural Production: Prospects, Applications andChallenges.Molecules, 26(16),4835. https://doi.org/10.3390/molecules26164835 [Google Scholar] [Crossref]
138. Souza-Neto, J. A., Powell, J. R., & Bonizzoni, M. (2018). Aedes aegypti vector competence studies: A review. Infection Genetics and Evolution, 67, 191–209. https://doi.org/10.1016/j.meegid.2018.11.009 [Google Scholar] [Crossref]
139. Su, X., Liang, Z., Xue, Q., Liu, J., Hao, X., & Wang, C. (2023). A comprehensive review of azadirachtin: physicochemical properties, bioactivities, production, and biosynthesis. Acupuncture and Herbal Medicine, 3(4), 256–270. https://doi.org/10.1097/hm9.0000000000000086 [Google Scholar] [Crossref]
140. Suleiman, A., Zeng, X., Rupesh Chakma, Wakai, I. Y., & Feng, Y. (2024). Recent advances and challenges in thermal stability of PVA based film: A review. Polymers for Advanced Technologies, 35(2). https://doi.org/10.1002/pat.6327 [Google Scholar] [Crossref]
141. Tarique, J., et al. “Effect of Glycerol Plasticizer Loading on the Physical, Mechanical, Thermal, and Barrier Properties o Arrowroot (Maranta Arundinacea) Starch Biopolymers.” Scientific Reports, vol. 11, no. 1, 6 July 2021, p. 13900, www.nature.com/articles/s41598-021-93094-y, https://doi.org/10.1038/s41598-021-93094-y. [Google Scholar] [Crossref]
142. Thakur, M. (2011). Sciencedirect.com. https://www.sciencedirect.com/topics/agricultural- andbiological-sciences/phytochemical [Google Scholar] [Crossref]
143. The Editors of Encyclopaedia Britannica, & Hosch, W. (2023, March 20). Polyvinyl alcohol (PVA). Encyclopedia Britannica. Retrieved November 14, 2024, from https://www.britannica.com/science/polyvinyl-alcohol [Google Scholar] [Crossref]
144. The International Journal of Business Management and Technology. (2023, February 15). Marketing Strategies and Competitive Advantage of Small Retailers in Tantangan, South Cotabato by The International Journal of Business Management and Technology, ISSN: 2581-3889 - Issuu. Issuu.com. https://issuu.com/theijbmt/docs/255557838 [Google Scholar] [Crossref]
145. Tsioptsias, C., Fardis, D., Ntampou, X., Tsivintzelis, I., & Panayiotou, C. (2023). Thermal Behavior of Poly(vinyl alcohol) in the Form of Physically Crosslinked Film. Polymers, 15(8), 1843. https://doi.org/10.3390/polym15081843 [Google Scholar] [Crossref]
146. Vasilakis, N., & Tesh, R. B. (2015). Insect-specific viruses and their potential impact on arbovirus transmission. Current Opinion in Virology, 15, 69–74. https://doi.org/10.1016/j.coviro.2015.08.007 [Google Scholar] [Crossref]
147. Villanueva, A., Sanchez, S., & Villanueva, K. (2021). Figure 2. The map of the Province of Nueva Ecija, Philippines. Source: ... ResearchGate. https://www.researchgate.net/figure/The-map- ofthe-Province-of-Nueva-Ecija-Philippines-Source- GoogleMap_fig2_356328396 [Google Scholar] [Crossref]
148. Villanueva, Aileen & Disu, Sandi & Villanueva, Kim. (2021). Assessing the School Heads' Leadership in the Towns of Nueva Ecija, Philippines: Inter-Relationship of Supervisory Skills, Interpersonal Skills, and Leadership Skills. OALib. 08. 1-15. 10.4236/oalib.1108088. [Google Scholar] [Crossref]
149. Vitangcol, A. B., Dalawampu, R. E. C., Gonzalvo, V. G. D., Parungao, A. S. A., & Tucay, S. a. D. (n.d.). Evaluating the Synergistic Larvicidal Effects of Pistia stratiotes (Water Lettuce) and Azadirachta indica (Neem) Leaf Ethanolic Extract on Aedes aegypti (Yellow Fever Mosquito) Larvae. Animo Repository. https://animorepository.dlsu.edu.ph/conf_shsrescon/2023/paperfnh/8/ [Google Scholar] [Crossref]
150. Wachira, S. W. (2023). Factors to consider in the development of nutraceutical and dietary supplements. In Elsevier eBooks (pp. 757–768). https://doi.org/10.1016/b978-0-443-18657- 8.00032-3 [Google Scholar] [Crossref]
151. Whirlpool. (2023, March 16). Learn how to use laundry pods correctly. Whirlpool. https://www.whirlpool.com/blog/washersand-dryers/how-to- use-laundry-pods-correctly.html. [Google Scholar] [Crossref]
152. Wirwis, & Sadowski, Z. (2023). Green Synthesis of Silver Nanoparticles: Optimizing Green Tea Leaf Extraction for Enhanced Physicochemical Properties. ACS Omega, 8(33), 30532–30549. https://doi.org/10.1021/acsomega.3c0377 [Google Scholar] [Crossref]
153. WORLD HEALTH ORGANIZATION (2019). GUIDELINES FOR LABORATORY AND FIELDTESTING OF MOSQUITO LARVICIDES. “Testing for Resistance in Larval Mosquitoes: An Overview,” 60–65. https://file:/Larval%20RT_Supplementary%20material%20Ove rview%20video.pdf. [Google Scholar] [Crossref]
154. World Health Organization (WHO) & World Health Organization: WHO. (2024, April 23). Dengue and severe dengue. Retrieved November 11, 2024, from https://www.who.int/news-room/fact-sheets/detail/dengue- andsevere-dengue. [Google Scholar] [Crossref]
155. World Health Organization. (2020). Vector control for neglected diseases: A manual for disease-endemic countries. [Google Scholar] [Crossref]
156. WHO. Achee et al. (2020). Aedes aegypti control: A review of current methods and future directions. Journal of Medical Entomology, 57(4), 761–774. Koenraadt et al. (2020). Community-based interventions for the control of Aedes aegypti. PLOS Neglected Tropical Diseases, 14(7), e0008404. [Google Scholar] [Crossref]
157. World Health Organization. (2024, April 23). Dengue and Severe Dengue. World Health Organization. https://www.who.int/newsroom/fact-sheets/detail/dengue-and-severe-dengue. [Google Scholar] [Crossref]
158. World Health Organization. (2024, May 30). Dengue - Global situation. WHO. Retrieved November 11, 2024, from https://www.who.int/emergencies/disease- outbreaknews/item/2024-DON518. [Google Scholar] [Crossref]
159. World Health Organization: WHO & World Health Organization: WHO. (2024, April 23). Dengue and severe dengue. https://www.who.int/news- room/factsheets/detail/dengue-and-severe-dengue. [Google Scholar] [Crossref]
160. Wylie, M. R., & Merrell, D. S. (2022). The Antimicrobial Potential of the Neem Tree Azadirachta indica. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.891535 [Google Scholar] [Crossref]
161. Yechiel, E. (2015). Interactive vehicles in synergistic Cosmeceuticals. In Elsevier eBooks (pp. 303–319). https://doi.org/10.1016/b978-081551504-3.50019-5 [Google Scholar] [Crossref]
162. Yusmaniar, Y., et al. “Synthesis of Polyvinyl Alcohol-Chitosan Composite Film Using Nanocellulose from Coconut Fibers (Cocos Nucifera).” International Journal of Engineering, vol. 36, no. 11, 2023, pp. 1993–2003, https://doi.org/10.5829/ije.2023.36.11b.05. Accessed 15 Nov. 2024. [Google Scholar] [Crossref]
163. Zettel, C., Kaufman, P., & University of Florida. (2019, March). Yellow fever mosquito - Aedes aegypti (Linnaeus). Retrieved November 15, 2024, from https://entnemdept.ufl.edu/creatures/aquatic/aedes_aegypti.htm# :~:text=Aedes%20aegypti%20adults%20have%20white,what%20appear%20to%20be%20stripes. [Google Scholar] [Crossref]
164. Zhakipbekov, K., Turgumbayeva, A., Akhelova, S., Bekmuratova, K., Blinova, O., Utegenova, G., Shertaeva, K., Sadykov, N., Tastambek, K., Saginbazarova, A., Urazgaliyev, K., Tulegenova, G., Zhalimova, Z., & Karasova, Z. (2024). Antimicrobial and Other Pharmacological Properties of Ocimum basilicum, Lamiaceae. Molecules, 29(2), 388. https://doi.org/10.3390/molecules29020388. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Assessment of the Role of Artificial Intelligence in Repositioning TVET for Economic Development in Nigeria
- Teachers’ Use of Assure Model Instructional Design on Learners’ Problem Solving Efficacy in Secondary Schools in Bungoma County, Kenya
- “E-Booksan Ang Kaalaman”: Development, Validation, and Utilization of Electronic Book in Academic Performance of Grade 9 Students in Social Studies
- Analyzing EFL University Students’ Academic Speaking Skills Through Self-Recorded Video Presentation
- Major Findings of The Study on Total Quality Management in Teachers’ Education Institutions (TEIs) In Assam – An Evaluative Study