Thickness Dependent Thermoelectric Properties of Pb0.4In0.6Se Thin Films Deposited by Physical Evaporation Technique

Authors

K. S. Chaudhari

S.V. S’s Dadasaheb Rawal College, Dondaicha, Dist Dhule (M.S.) (India)

Article Information

DOI: 10.51244/IJRSI.2025.120800086

Subject Category: Physics

Volume/Issue: 12/8 | Page No: 1007-1011

Publication Timeline

Submitted: 2025-08-10

Accepted: 2025-08-15

Published: 2025-09-06

Abstract

Thin films having different thickness of Pb0.4In0.6Se were deposited by thermal evaporation techniques, onto precleaned amorphous glass substrate. The structural properties of films were evaluated by XRD, optical microscopy, SEM and EDAX. The thermoelectric of annealed thin films have been evaluated. Thermoelectric Properties shows a positive sign exhibiting p- type nature of films. Fermi energy and scattering parameter were determined. The calculated values of Fermi energy and scattering parameter are 4 to 0.4 eV and 0.184 to 0.127 respectively. The X-ray diffraction analysis confirms that films are polycrystalline having orthorhombic structure. The average grain size is found to be 27.08 nm.

Keywords

optical microscopy, XRD, SEM, EDAX, thermoelectric properties.

Downloads

References

1. W. Z. Shen, K. Wang and L.F. Jiang Appl. Phys.Lett, 79(16), 2579-2581, (2001). [Google Scholar] [Crossref]

2. Y. Badr and M.A. Mohmoud, Cryst. Res. Technol, 41 (7), 658-663(2006). [Google Scholar] [Crossref]

3. M. Shandalov and Y. Golan, The Eur. Physical J Appl Phys, (Submitted) 1-7, (2004). [Google Scholar] [Crossref]

4. Matt low, Joseph M. Luther, Qing Song, Barbata ,K. Hughes, J. of Chem Soc, 130, 5974 -5985, (2008). [Google Scholar] [Crossref]

5. S. Prabahar, N. Suryanarayanan, S. Srikanth, S. Srikanth, D. Kathirvel, Chal. Letters, 6 (9), 203 - 211, (2009). [Google Scholar] [Crossref]

6. L. H. K. Alfhaid, A. f. Qasrawi and S. E. Algarni, IEEE Transitions on Electron Devices, vol 68, no3, pp 1093-1100(2021). [Google Scholar] [Crossref]

7. Yafei Zhao, Kuiying Nie, Liang He, Chemical Physics Letters vol 824,pp634- 641(2023) [Google Scholar] [Crossref]

8. K. S. Chaudhari, IJRAR, vol10, isshu3, pp33 to 38 (2023). [Google Scholar] [Crossref]

9. H. S. Nalwa (ed.) Hand book of thin film materials 1 Academic press, (2002). [Google Scholar] [Crossref]

10. M. D. Robertson, J. M. Corbett, B. Webb; Micron, 1 (2) 175-183, (1997). [Google Scholar] [Crossref]

11. Micocci, A. Tepore, Solar Energy Materials, 22, 215 -222, (1991). [Google Scholar] [Crossref]

12. A.N.Banerjee, R,Maity, P.K.Ghosh, K.K.Chattopadhyay,Thin Solid Films 474, 261-266, (2005). [Google Scholar] [Crossref]

13. U. P. Khairnar, P. H. Pawar, G. P. Bhavsar, Cryst. Res. Technol, 37(12), 1293 – 1302, (2002). [Google Scholar] [Crossref]

14. K. Pattanaik, A.Srinivasan, J.of Optoelectronics and Adv. Materials, 5(5), 1161, (2003). [Google Scholar] [Crossref]

15. D. Kumar and S. Kumar, Bull. Mater. Sci, 27(5), 441, (2004). [Google Scholar] [Crossref]

16. K. S. Chaudhari, Y. R. Toda, A. B. Jain, D. N. Gujarathi, Archives of Applied Science Research, 3(2), 292–296 (2011). [Google Scholar] [Crossref]

17. B. Kavitha, M. Dhanan, J. Of Ovonic Res, 6(2), 75-80, (2010). [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles