International Journal of Research and Innovation in Applied Science (IJRIAS)

Submission Deadline-09th September 2025
September Issue of 2025 : Publication Fee: 30$ USD Submit Now
Submission Deadline-04th September 2025
Special Issue on Economics, Management, Sociology, Communication, Psychology: Publication Fee: 30$ USD Submit Now
Submission Deadline-19th September 2025
Special Issue on Education, Public Health: Publication Fee: 30$ USD Submit Now

A Bayesian Estimation Procedure for One-Parameter Exponential Survival Distributions Facilitated by an Inverted Gamma Prior

  • John Effiong Usen
  • Emmanuel Emmanuel Asuk
  • Godswill Itobo Egede
  • 881-905
  • Jun 14, 2025
  • Mathematics

A Bayesian Estimation Procedure for One-Parameter Exponential Survival Distributions Facilitated by an Inverted Gamma Prior

John Effiong Usen*; Emmanuel Emmanuel Asuk; Godswill Itobo Egede

University of Cross River State, Calabar, Cross River State, Nigeria

*Corresponding Author

DOI: https://doi.org/10.51584/IJRIAS.2025.100500079

Received: 05 May 2025; Accepted: 09 May 2025; Published: 14 June 2025

ABSTRACT

A Bayesian estimation procedure for one-parameter exponential survival distributions facilitated by an inverted gamma prior was performed in this study using data obtained from data obtained from the University of Calabar Teaching Hospital (UCTH). The exponential survival distributions are just one amongst a number of distributions adopted for tackling problems in survival analysis, and may occur either in one parameter or two parameters under uncensored or censored conditions. The review of literature exposed the absence of studies addressing the need for an alternative procedure that carefully considered the peculiarities of the exponential survival distribution; hence, this study aimed to address this gap. Based on this, a Bayesian estimation technique was employed to estimate only the parameter of the one-parameter exponential survival distribution under uncensored and censored circumstances, with the survivorship and hazard functions deduced, thereafter. The results obtained showed that the parameter of the exponential survival distribution (λ) existed both for the one-parameter uncensored and censored cases of the exponential survival distribution, with known expressions. Both the MLE and Bayesian estimation results were simulated using real-life data, and the results showed near-convergence of the MLE and Bayesian estimation for unit values of the parameters of the inverted gamma prior used in the study.

Keywords: Bayesian Estimation Procedure, One-Parameter Exponential Survival Distributions, Inverted Gamma Prior

INTRODUCTION

Background of the study

In industries, the interest of process engineers may often be the estimation of the time available until a machine fails, while the interest of specialists in the clinical sciences may be the estimation of the time available: until a tumor reoccurs, until a cardiovascular death after some treatment intervention, until AIDS overwhelms an HIV infected person, etc. [1; 2]. Without the adoption of appropriate statistical know-how, these professionals may rely solely on intuition or experience for estimating such time [2]. The need to estimate such times non-intuitively, with high level of precision, has birthed the concept of survival analysis in statistics; and this technique has proven to be efficient [1; 2].

The area of survival analysis uses a host of techniques and statistical routines [3; 4]. As a statistical concept, survival analysis estimates the expected time duration until one or more events (such as death in biological organisms, and failure in mechanical systems) happen [5; 6]. Since its initiation in the early parts of 1940s, as a very useful bio-statistical tool, several statistical distributions like: exponential, Weibull, log-normal, gamma, generalized gamma, and log-logistic distributions, have all been adopted for studies on survival analysis, with the exponential survival distribution being the most commonly used distribution out of the lot [14; 15; 16; 17; 18]. More so, all these used distributions, as evidenced in literature, have had their parameters estimated via the general maximum likelihood estimation (MLE) routine, and this has no doubt produced formidable results; and with the parameter estimates for these distributions, their survival and hazard functions have been obtained [19; 20; 20; 22].

In recent times, to allow for advancements in statistical theory along the direction of exploring alternative estimation routines to the MLE, researchers have begun to attempt the adoption of Bayesian routine for achieving all (and even more) of what the MLE has been used to achieve with the afore-mentioned survival distributions [23; 24; 25; 26]. But one encountered problem, among several, has remained the nature of prior (informative or non-informative), and the suitability of prior (be it the: gamma, inverted gamma, Rayleigh, etc.) to be used [28; 29; 31]. In this study, an informative prior (the inverted gamma distribution) has been adopted, not only for the aim of obtaining Bayesian estimates of the one-parameter exponential distribution, but also for making inference about their survivorship and hazard functions under censored and uncensored circumstances.

Statement of the problem

One of the most commonly used distributions in survival analysis is the exponential survival distribution, be it for the one-parameter case or two-parameter case (with or without covariates). As evidenced in literature, Maximum Likelihood Estimation (MLE) has been used a lot for estimating parameters of one-parameter and two-parameter exponential survival distributions, and for obtaining their survival and hazard functions. And, although the MLE procedure has remained very efficient for achieving this, its usage yet restricts survival analysts to just one choice of estimation procedure. The absence of an attempt, in literature, to proffer the use of the Bayesian alternative to the MLE for achieving the same results, with a suitable informative prior, limits statistical theoretical advancement, going forward. Thus, this study is a foremost attempt in this regard.

Aim and objectives of the study

This study aims to perform a Bayesian estimation for one-parameter exponential survival distributions facilitated by an inverted gamma prior. In line with achieving the stated aim, the objectives of the study are to: (i) review the MLE procedure for obtaining the survivorship and hazard functions under (uncensored and censored conditions), (ii) adopt Bayesian estimation procedure for obtaining the survivorship and hazard functions (under uncensored and censored conditions), and (iii) simulate the MLE and Bayesian alternative on real-life data.

MATERIALS AND METHODS

MLE for data with right-censored observations

Suppose that persons were followed to death or censored in a study. Let ,   be the survival times observed from the  individuals, with  exact times and  right-censored times. Assume that the survival times follow a distribution with density function , and survivorship function , where  denotes unknown  parameters  in the distribution. If the survival time is discrete (that is, it is observed at discrete time only), then  represents the probability of observing , and  represents the probability that the survival or event time is greater than  [7]. In other words,  and  represent the information that can be obtained respectively from an observed uncensored survival time and observed right-censored survival time [8]. Therefore, the product  represents the joint probability of observing the uncensored survival times, and  represents the joint probability of those right-censored survival times. The product of these two probabilities, denoted by ,

represents the joint probability of observing  [7].

A similar interpretation applies to continuous survival , called the likelihood function of , which can also be interpreted as a measure of the likelihood of observing a specific set of survival times, namely: , given a specific set of parameters  [7; 9]. The method of the MLE is to find an estimator of  that maximizes  (or which is most likely to have produced the observed data ) [8].

Taking the logarithm of , and denoting it by , gives:

Then the MLE  is a  in the set of  that maximizes :

It is clear that  is a solution of the following simultaneous equations, which are obtained by taking the derivative of  with respect to each :

To obtain the MLE , one can use a numerical method. A commonly used numerical method is the Newton-Raphson iterative procedure, which can be summarized as follows [10; 12].

  1. Let the initial values  be zero; that is, let

  1. The changes for  at each subsequent step, denoted by , is obtained by taking the second derivative of the log-likelihood function:

  1. Using , the value of  at  step is

The iteration terminates at, say, the  step if , where  is a given precision, usually a very small value,  or  [11]. Then the MLE  is defined as

The estimated covariance matrix of the MLE  is given by

One of the good properties of a MLE is that if  is the MLE of , then  is the MLE of  if  is a finite function and need not be one-to-one [10; 30].

The estimated  confidence interval for any parameter  is

where  is the  diagonal element of  and  is the  percentile point of the standard normal distribution . For a finite function  of , the estimated  confidence interval for  is its respective range  on the confidence interval in equation (6) [10; 30], that is,

In case  is monotone in , the estimated  confidence interval for  is

MLE for data with right-, left-, and interval-censored observations

If the survival times  observed for the  persons consist of uncensored left-, right-, and interval-censored observations, then the estimation procedures are similar [10; 30]. Assume that the survival times follow a distribution with density function  and the survivorship function , where  denotes all unknown parameters of the distribution. Then the log-likelihood function is given by:

where the first sum is over the uncensored observations, the second sum is over the right-censored observations, the third sum is over the left-censored observations, and the last sum is over the interval-censored observations, with  as the lower end of a censoring interval [10; 30]. The other steps for obtaining the MLE  of  are similar to the steps shown in section (3.1) by substituting for the log-likelihood function defined in equation (1) with the log-likelihood function in equation (9).

MLE on the one-parameter exponential survival distribution

The one-parameter exponential distribution has the following function;

survivorship function;

and hazard function;

where . Obviously, the exponential distribution is characterized by one parameter, . The estimation of  by maximum likelihood methods for data without censored observations will be given first followed by the case with censored observations.

Maximum likelihood estimation of  for data without censored observations

Suppose that there are  persons in the study and everyone is followed to death or failure. Let  be the exact survival times of the  people. The likelihood function, using (10) and (1), is:

and the log-likelihood function is

From equation (2), the MLE of  is

Since the mean  of the exponential distribution is  and a MLE is invariant under a one-to-one transformation, the MLE of  is

It can be shown that  has an exact chi-square distribution with  degrees of freedom. Since  and  an exact  confidence interval for  is

where  is the  percentage point of the chi-square distribution with  degrees of freedom; that is,  [10; 12]. When  is large (say, ),  is approximately normally distributed with mean  and variance  [10; 12]. Thus, an approximate  confidence interval for  is

where  is the  percentage point, , of the standard normal distribution [10; 12]. Since  has an exact chi-square distribution with  degrees of freedom, an exact  confidence interval for the mean survival time is

Maximum likelihood estimation of  for data with censored observations

We first consider singly censored and then progressively censored data. Suppose that without loss of generality, the study or experiment begins at time zero with a total of  subjects. Survival times are recorded and the data become available when the subjects die one after the other in such a way that the shortest time comes first, the second shortest time comes second, and so on [12; 27]. Suppose that the investigator has decided to terminate the study after  out of the  subjects have and to sacrifice the remaining  subjects at that time. Then the survival times for the  subjects are

where a superscript plus indicates a sacrificed subject, and thus  is a censored observation. In this case,  and  are fixed values and all of the  censored observations are equal [12; 27].

The likelihood function, using equations (1), (10) and (11), is

and from equation (2), the MLE of  is

The mean survival time  can then be estimated by

It has been shown that  has a chi-square distribution with  degrees of freedom [12; 27]. The mean and variance of  are  and  respectively. The  confidence interval for  is

When  is large, the distribution of  is approximately normal with mean  and variance  [12; 27]. An approximate  confidence interval for  is then

It has also been shown that  has a chi-square distribution with  degrees of freedom [12; 27]. Thus, a  confidence interval for  is

They also develop test procedures for the hypothesis  against the alternative . One of their rules of action is to accept  if  and reject  if , where  and  is the significance level [12]. Or if the estimated mean survival time calculated from equation (20) is greater than , the hypothesis  is rejected at the  level of significance [27].

A slightly different situation may arise in laboratory experiments. Instead of terminating the study after the  death, the experimenter may stop after a period of time , which may be six months or a year [27]. If we denote the number of deaths between 0 and  as , the survival data may look as follows:

Mathematical derivations of the MLE of  and  are exactly the same and equation (19) can still be used [27].

Progressively censored data come more frequently from clinical studies where patients are entered at different times and the study lasts a predetermined period of time [13]. Suppose that the study begins at time 0 and terminates at time  and there are a total of  people entered [12; 27]. Let  be the number of patients who die before or at time  and  the number of patients who are lost to follow-up during the study period or remain alive at time . The data look as follows: . Ordering the  uncensored observations according to their magnitude, we have:

The likelihood function, using equations (1), (10) and (11), is

and the log-likelihood function is

and from equation (2), the MLE of the parameter  is

Consequently,

is the MLE of the mean survival time [12; 27]. The sum of all of the observations, censored and uncensored, divided by the number of uncensored observations, gives the MLE of the mean survival time [12; 27]. To overcome the mathematical difficulties arising when all of the observations are censored . [7] defines

In practice, this estimate has little value.

The distribution of  for large  is approximately normal with mean  and variance:

where  is the time that the  person is under observations. In other words,   is computed from the time  person enters the study to the end of the study [12; 27]. If the observations times  are not known, the following quick estimate of  can be used [7].

Thus, an approximate  confidence interval for  is, by (6),

The distribution of  is approximately normal with mean  and variance:

Again, a quick estimate is

An approximate  confidence interval for  is then, by (6),

Informative and non-informative priors

Let  be a prior distribution for the parameter  of a distribution. Then, according to [16; 17],

  1. The distribution is an informative prior, if it biases the parameter towards particular values (i.e., an informative prior expresses specific, definite information about a variable);
  2. The distribution is a non-informative prior, if it does not influence the posterior hyperparameters (i.e., an uninformative prior, or diffuse prior, expresses unclear or general information about a variable).

The inverted gamma prior

If a random variable  has the gamma distribution , then the random variable  has the inverted gamma distribution  with the density function [16; 17].

For , we obtain

And,

The Bayesian estimation procedure

Let  be a random sample from the density . Before taking the sample, the distribution of  (called a prior distribution), is assumed known. The objective in Bayesian estimation of the parameter  is to determine the distribution  (known as the posterior distribution) after taking the sample.

Let us consider the conditional distribution

Substituting for equation (34) in equation (35) gives,

But 

Therefore,

Putting equation (37) into equation (36) gives

Since we are taking a random sample of this distribution

Hence, equation (38) becomes:

The above equation (39) gives  as the posterior Bayes distribution with respect to the prior distribution .

Hence,

is called the posterior Bayes estimator with respect to the prior distribution ; where  is any function of .

An outline of the research estimation procedure

The proposed Bayesian alternative will be implemented with the procedure below.

Step 1: Determine an appropriate prior .

In this case, the appropriate prior for the one-parameter exponential distribution is the inverted gamma distribution with parameters  and . That is,

Step 2: Obtain the Bayesian estimate of  for data without censored observations.

Here the procedure involved requires that we obtain  thus:

where,  denotes the likelihood function. That is,

Step 3: Obtain the Bayesian estimate of  for data with censored observations.

Here the procedure involved requires that we obtain  thus:

where,  denotes the likelihood function. That is,

RESULTS

Bayesian estimation for the one-parameter uncensored case

Theorem 1

If  is an uncensored exponential random variable with parameter , and the prior density of  is the inverted gamma with parameters  and , then the estimate of  provided by the posterior is , given by:

Proof 1:

Now,  is the posterior distribution of the parameter . Let  be the likelihood function. Then,

Hence,

Let 

Since the mean  of the exponential distribution is  and Bayesian estimation is invariant under one-to-one transformation, then the Bayesian estimate of  is given by:

Therefore, the following axiom is established:

Axiom 1:

(a) The estimate of the survivorship function is given as:

(b) The estimate of the hazard function is given as:

Bayesian estimation for the one-parameter censored case

Theorem 2:

If  is a censored exponential random variable with parameter , and the prior density of  is the inverted gamma with parameters  and , then the estimate of  provided by the posterior is , given by:

Proof 2:

Now,  is the posterior distribution of the parameter . Let  be the likelihood function. Then,

Hence,

Let 

Again, since the mean  of the exponential distribution is  and Bayesian estimation is invariant under one-to-one transformation, then the Bayesian estimate of  is given by:

Therefore, the following axiom is established:

Axiom 2:

(a) The estimate of the survivorship function is given as:

(b) The estimate of the hazard function is given as:

Simulation

One-parameter exponential distribution without censored observations

Given the remission times in months for 734 HIV/AIDS patients (Appendix 1). Assuming that remission duration follows the exponential distribution, we can estimate the parameter  as follows.

Simulating the one-parameter uncensored case, via the MLE, the relapse rate, , is

 per week

The mean remission time  is then  weeks.

Using the analytical procedures given above, confidence intervals for  and  can also be obtained.

A 95% confidence interval for the relapse rate , following  is approximately

A 95% confidence interval for the mean remission time following  is

Once the parameter  is estimated, other estimates can be obtained. For example, the probability of staying in remission for at least 20 months, can be estimated from:

However, simulating the one-parameter uncensored case by Bayesian alternative, we have a Bayesian estimate of the relapse rate, , at , gave results consistent with those which were obtained from the uncensored case (via existing method). And this is based on the convergence of the values. That is,

One-parameter exponential distribution with censored observations

A study is carried out on 312 AIDS patients. The study is terminated after half (156) of the AIDS are dead with the other half sacrificed at that time. The survival data of the 312 AIDS patients are shown in Appendix 2. Assuming that the failure of these AIDS patients follows an exponential distribution, the survival rate  and mean survival time  via the MLE method are estimated, respectively, according to

And

By

 per week

and  weeks. A 95% confidence interval for  by  is

A 95% confidence interval for  following  is

The probability of surviving a given time for the patients can be estimated from . For example, the probability that a patient exposed to AIDS will survive longer than 122 months is

The probability of dying in 122 months is then .

However, assuming that the failure of these AIDS patients follows an exponential distribution, the survival rate  and mean survival time  via the Bayesian method are estimated, respectively, at  according to

Hence,  per week and  weeks. A 95% confidence interval for  by  is

A 95% confidence interval for  following  is

Similarly, the probability of surviving a given time for the patients can be estimated from . For example, the probability that a patient exposed to AIDS will survive longer than 122 months will now be:

The probability of dying in 122 months is then .

DISCUSSION

The results of this study are summarized in Table 1 and Table 2. These two tables respectively show the parameter estimates of  using the maximum likelihood estimation and Bayesian estimation procedures under uncensored and censored circumstances. Here, Table 1 and Table 2 show that the parameter estimates of  exists and are non-zero. Consequently, this implies the existence of the survivorship and hazard functions.

For the one-parameter exponential distribution without censored observations, we note that at , using the Bayesian approach gave results consistent with those which were obtained from the uncensored case through the MLE procedure as confirmed by the convergence of the , interval and  values.

For the one-parameter exponential distribution with censored observations, we see that at , using the Bayesian approach gave results with significant divergence from those which were obtained from the uncensored case based on the MLE method as confirmed by the divergence of the , and interval  values.

CONCLUSION

In conclusion, this study has attempted a Bayesian estimation alternative to the MLE for estimating parameters of exponential survival distributions (in one parameter and two parameters) under uncensored and censored scenarios. Two axioms were deduced on what the survivorship and hazard functions are, for each of the estimated parameters. The results obtained from the one-parameter cases showed that known parameter estimates of , as well as the survivorship and hazard function, exists, and are similar to the results obtained via the MLE under certain values of the parameters of the prior used (in this case, the inverted gamma distribution).

Table 1 Maximum likelihood estimates for one-parameter exponential survival distribution

ET Maximum Likelihood
Sur. Dist. Case One parameter
U
C

ET = Estimation Technique; Sur. Dist. = Survival Distribution; U = Uncensored; C = Censored

Table 2 Bayesian estimates for one-parameter exponential survival distribution

ET Bayesian
Sur. Dist. Case One parameter
U
C

ET = Estimation Technique; Sur. Dist. = Survival Distribution; U = Uncensored; C = Censored

REFERENCES

  1. Abujarad, M. H., Abujarad, E. S. A. & Khan, A. A. (2019). Bayesian survival analysis of type I general exponential distributions. Annals of Data Science.
  2. Aelen, O. O. (1994). Effects of frailty in survival analysis. Statistical Methods in Medical Research, 12(5), 34-56.
  3. Ahmed, O. M. (2021). Bayesian estimations of exponential distributions based on interval-censored data with cure fraction. Hindawi Journal of Mathematics, Article ID: 9822870, 1-11.
  4. Aliyu, Y. & Usman, U. (2023). On bivariate Nadarajah-Haghighi distribution derived from Farlie-Gumbel-Morgenstern copula in the presence of covariates. Journal of the Nigerian Society of Physical Sciences, 5(2), 871.
  5. Al-Kutubi, H. S. & Ibrahim, N. A. (2009). Bayes estimator for exponential distribution with extension of Jeffrey’s prior information. Malaysian Journal of Mathematical Sciences, 3(2), 297-313.
  6. Amico, M. & Keilegom, I. V. (2018). Cure models in survival analysis. Annual Review of Statistics and its Applications, 5, 311-342.
  7. Bartholomew, D. J. (1957). A problem in life testing. Journal of the American Statistical Association, 52, 350-355.
  8. Belaghi, R. A., Asl, M. N., Alma, O. G., Singh, S. & Vasfi, M. (2019). Estimation and prediction for the Poisson-exponential distribution based on type-II censored data. American Journal of Mathematical and Management Sciences, 38(1), 96-115.
  9. Clark, T. G., Bradburn, M. J., Love, S. B. & Altman, D. G. (2003). Survival analysis part 1: Basic concepts and first analyses. British Journal of Cancer, 89, 232-238.
  10. Epstein, B. (1960). Estimation of the parameters of two-parameter exponential distribution from censored samples. Technometrics, 2, 403-406.
  11. Garcia, V., Marcel-Escobar, M., & Varquez-Polo, F. J. (2020). Generalizing exponential distributions using an extended Marshall-Olkin procedure. MDPI, 12(464), 1-15.
  12. Gehan, E. A. (1970). Unpublished notes on survival time studies. The University of Texas, M. D. Anderson Cancer Center, Houston, Texas.
  13. George, B. Seals, S. & Aban, I. (2014). Survival analysis and regression models. Journal of Nuclear Cardiology, 21(4), 686-694.
  14. Iddrisu, A., Alhassan, A. & Amidu, N. (2019). Survival analysis of birth defect infants and children with Pneumonia mortality in Ghana. Hidawi – Advances in Public Health, 1-7.
  15. Lin, J., Sinha, D., Lipsitz, S. & Polpo, A. (2012). Semiparametric Bayesian survival analysis using models with log-linear median. Biometrics, 68(14), 1136-1145.
  16. Kaushik, A. (2017). Bayesian estimation of the parameters of exponentiated exponential distribution under progressive interval type-1 censoring scheme with binomial removals. Journal of Statistics Applications and Processes, 6(1), 65-79.
  17. Khan, N. & Khan, A. A. (2018). Bayesian analysis of Topp-Leone generalized exponential distribution. Austrian Journal of Statistics, 47, 1-15.
  18. Kharazmi, O., Hamedani, G. G. & Cordeiro, G. M. (2023). Log-mean distribution: applications to medical data, survival regression, Bayesian and non-Bayesian discussion with MCMC algorithm. Journal of Applied Statistics, 50(5), 1152-1177.
  19. Khumar, D. (2014). Moment generating functions of generalized order statistics from extended type II generalized logistic distribution. Journal of Statistical Theory and Applications, 13(4), 273-288.
  20. Kim, J. (2016). Survival analysis. Research and Statistics, 33(4), 172-174.
  21. Kishan, R. & Sangal, P. K. (2022). Classical and Bayesian estimation in exponential power distribution under type-1 progressive hybrid censoring with binomial removals. Malaysian Journal of Mathematical Sciences, 16(3), 537-558.
  22. Okwuokenye, M. & Peace, K. E. (2015). Size and power of tests of hypotheses on survival parameters from the Lindley distribution with covariates. Austin Biometrics and Biostatistics, 2(4), 1026.
  23. Omer, M. E., Abubakar, M. R., Adam, M. B. & Mustafa, S. M. (2020). Cure models with exponentiated Weibull exponential distribution for the analysis of Melanoma patients. MDPI Mathematics, 8, 1-15.
  24. Ramadan, A. T., Tolba, A. H. & El-Desouky, B. S. (2021). Generalized power Akshaya distribution and its applications. Open Journal of Modeling and Simulation, 9(4), 323-338.
  25. Raqab, M. Z. & Madi, M. T. (2005). Bayesian inference for the generalized exponential distribution. Journal of Statistical Computation and Simulation, 75(10), 841-852.
  26. Rashwan, N. I. (2016). A note on Kumaraswamy exponentiated Rayleigh distribution. Journal of Statistical Theory and Applications, 15(3), 286-295.
  27. Shim, J. Y. (1997). Discount survival distributions for no covariate case. The Korean Communications in Statistics, 4(2), 491-496.
  28. Sundaram, N. (2011). Exponentiated exponential models for survival data. Indian Journal of Science and Technology, 4, 923-930.
  29. Yari, G. & Tondpour, Z. (2017). Estimation of the Burr XII-exponential distribution parameters. Applications and Applied Mathematics: An International Journal, 13(1), 47-66.
  30. Zelen, M. (1966). Applications of exponential methods to problems in cancer research. Journal of the Royal Statistical Society, Series A, 129, 368-398.
  31. Zhou, W. & Zhang, G. (2013). The generalized Kumaraswamy exponential distribution with application in survival analysis. Journal of Zhejiang University, 40(5).

APPENDICES

Appendix 1

Uncensored Data for Remission Times of HIV Patients

S/N RT S/N RT S/N RT S/N RT S/N RT S/N RT S/N RT S/N RT
1 126 36 130 71 130 106 131 141 128 176 134 211 139 246 135
2 130 37 135 72 130 107 135 142 133 177 134 212 132 247 137
3 138 38 130 73 128 108 132 143 134 178 127 213 128 248 134
4 131 39 135 74 137 109 138 144 129 179 132 214 135 249 133
5 139 40 135 75 135 110 138 145 134 180 130 215 127 250 129
6 132 41 132 76 132 111 137 146 137 181 134 216. 135 251 140
7 127 42 139 77 127 112 135 147 134 182 138 217 133 252 132
8 138 43 137 78 127 113 139 148 127 183 126 218 130 253 136
9 132 44 132 79 130 114 129 149 139 184 125 219 128 254 138
10 130 45 138 80 129 115 131 150 134 185 134 220 131 255 128
11 134 46 129 81 137 116 139 151 136 186 129 221 136 256 134
12 138 47 136 82 131 117 131 152 133 187 126 222 135 257 135
13 127 48 130 83 130 118 129 153 131 188 131 223 135 258 139
14 136 49 133 84 134 119 131 154 130 189 131 224 131 259 137
15 134 50 133 85 128 120 140 155 139 190 135 225 126 260 135
16 130 51 133 86 139 121 126 156 137 191 135 226 128 261 132
17 138 52 137 87 131 122 140 157 135 192 130 227 132 262 132
18 132 53 129 88 135 123 134 158 136 193 132 228 135 263 133
19 130 54 135 89 127 124 133 159 133 194 133 229 127 264 136
20 133 55 125 90 135 125 141 160 133 195 133 230 133 265 133
21 135 56 133 91 136 126 133 161 126 196 131 231 137 266 137
22 136 57 136 92 132 127 134 162 131 197 132 232 133 267 136
23 130 58 130 93 134 128 131 163 131 198 137 233 130 268 140
24 131 59 129 94 137 129 135 164 136 199 133 234 134 269 130
25 138 60 132 95 130 130 129 165 138 200 131 235 129 270 138
26 130 61 127 96 140 131 133 166 137 201 139 236 135 271 130
27 140 62 137 97 128 132 140 167 129 202 136 237 129 272 135
28 137 63 140 98 128 133 134 168 139 203 137 238 132 273 125
29 135 64 139 99 136 134 132 169 133 204 139 239 134 274 132
30 134 65 135 100 127 135 130 170 137 205 127 240 137 275 130
31 131 66 133 101 133 136 139 171 131 206 134 241 132 276 133
32 137 67 130 102 139 137 133 172 130 207 137 242 132 277 136
33 138 68 136 103 127 138 130 173 132 208 135 243 133 278 133
34 126 69 128 104 133 139 137 174 137 209 133 244 140 279 127
35 136 70 129 105 134 140 135 175 139 210 137 245 129 280 131

S/N = Serial Numbers; RT = Remission Times

Data Obtained from University of Calabar Teaching Hospital (UCTH)

S/N RT S/N RT S/N RT S/N RT S/N RT S/N RT S/N RT S/N RT
281 131 316 137 351 136 386 131 421 128 456 139 491 135 526 137
282 134 317 132 352 127 387 134 422 134 457 130 492 139 527 131
283 127 318 134 353 128 388 131 423 133 458 127 493 129 528 131
284 139 319 133 354 132 389 135 424 134 459 134 494 124 529 140
285 126 320 133 355 138 390 131 425 135 460 136 495 139 530 137
286 132 321 138 356 133 391 127 426 140 461 133 496 136 531 131
287 140 322 132 357 129 392 133 427 138 462 135 497 139 532 130
288 135 323 136 358 129 393 126 428 131 463 135 498 141 533 133
289 133 324 140 359 135 394 131 429 134 464 127 499 136 534 134
290 134 325 138 360 133 395 131 430 130 465 131 500 141 535 127
291 139 326 131 361 131 396 135 431 132 466 139 501 131 536 130
292 129 327 136 362 130 397 138 432 129 467 135 502 132 537 133
293 128 328 133 363 127 398 130 433 132 468 135 503 132 538 128
294 137 329 138 364 133 399 131 434 132 469 129 504 130 539 129
295 135 330 137 365 131 400 131 435 130 470 139 505 127 540 132
296 131 331 132 366 132 401 140 436 131 471 134 506 131 541 131
297 141 332 130 367 129 402 136 437 140 472 136 507 131 542 129
298 130 333 127 368 128 403 129 438 130 473 140 508 133 543 133
299 133 334 138 369 135 404 131 439 132 474 133 509 126 544 133
300 134 335 138 370 135 405 137 440 133 475 135 510 128 545 137
301 127 336 130 371 135 406 135 441 132 476 128 511 135 546 135
302 134 337 130 372 125 407 130 442 133 477 130 512 131 547 137
303 132 338 133 373 137 408 136 443 137 478 131 513 125 548 130
304 124 339 141 374 134 409 138 444 125 479 133 514 134 549 135
305 132 340 128 375 133 410 133 445 135 480 128 515 137 550 133
306 137 341 137 376 137 411 128 446 133 481 136 516 132 551 134
307 136 342 132 377 136 412 129 447 135 482 129 517 129 552 130
308 134 343 126 378 135 413 131 448 135 483 128 518 126 553 125
309 134 344 128 379 137 414 137 449 130 484 129 519 136 554 136
310 135 345 136 380 133 415 131 450 135 485 137 520 132 555 134
311 133 346 134 381 130 416 129 451 135 486 135 521 130 556 140
312 133 347 136 382 131 417 129 452 133 487 127 522 139 557 131
313 135 348 128 383 133 418 132 453 125 488 131 523 131 558 132
314 128 349 139 384 129 419 134 454 134 489 135 524 133 559 137
315 130 350 133 385 131 420 126 455 132 490 128 525 136 560 139

S/N = Serial Numbers; RT = Remission Times

Data Obtained from University of Calabar Teaching Hospital (UCTH)

S/N RT S/N RT S/N RT S/N RT S/N RT S/N RT S/N RT S/N RT
561 126 596 140 631 137 666 135 701 133 736 771 806
562 130 597 134 632 137 667 136 702 132 737 772 807
563 126 598 134 633 127 668 138 703 130 738 773 808
564 127 599 127 634 133 669 130 704 137 739 774 809
565 125 600 138 635 133 670 127 705 137 740 775 810
566 135 601 135 636 131 671 136 706 129 741 776 811
567 133 602 136 637 127 672 139 707 137 742 777 812
568 140 603 140 638 139 673 134 708 134 743 778 813
569 136 604 129 639 133 674 134 709 137 744 779 814
570 135 605 134 640 136 675 132 710 130 745 780 815
571 132 606 137 641 138 676 134 711 134 746 781 816
572 135 607 130 642 134 677 136 712 127 747 782 817
573 129 608 130 643 132 678 130 713 133 748 783 818
574 139 609 134 644 137 679 133 714 131 749 784 819
575 128 610 133 645 132 680 138 715 128 750 785 820
576 132 611 140 646 132 681 140 716 128 751 786 821
577 133 612 135 647 130 682 135 717 130 752 787 822
578 130 613 140 648 139 683 139 718 129 753 788 823
579 139 614 133 649 129 684 129 719 133 754 789 824
580 133 615 135 650 139 685 131 720 130 755 790 825
581 130 616 136 651 134 686 126 721 133 756 791 826
582 128 617 134 652 140 687 133 722 138 757 792 827
583 136 618 130 653 132 688 132 723 133 758 793 828
584 137 619 138 654 133 689 130 724 137 759 794 829
585 132 620 139 655 140 690 128 725 137 760 795 830
586 126 621 138 656 140 691 139 726 139 761 796 831
587 135 622 139 657 137 692 137 727 133 762 797 832
588 133 623 137 658 128 693 133 728 134 763 798 833
589 139 624 130 659 139 694 132 729 135 764 799 834
590 139 625 136 660 130 695 135 730 140 765 800 835
591 135 626 132 661 137 696 132 731 139 766 801 836
592 134 627 135 662 132 697 131 732 139 767 802 837
593 135 628 134 663 130 698 137 733 125 768 803 838
594 136 629 131 664 130 699 129 734 129 769 804 839
595 132 630 127 665 132 700 134 735 770 805 840

S/N = Serial Numbers; RT = Remission Times

Data Obtained from University of Calabar Teaching Hospital (UCTH)

Appendix 2

Censored Data for AIDS Patients

S/N ST S/N ST S/N ST S/N ST S/N ST S/N ST S/N ST S/N ST
1 113 36 72 71 103 106 80 141 8 176 125+ 211 125+ 246 125+
2 5 37 125 72 71 107 6 142 34 177 125+ 212 125+ 247 125+
3 53 38 5 73 92 108 91 143 2 178 125+ 213 125+ 248 125+
4 6 39 1 74 60 109 51 144 115 179 125+ 214 125+ 249 125+
5 14 40 85 75 65 110 66 145 73 180 125+ 215 125+ 250 125+
6 102 41 40 76 90 111 116 146 43 181 125+ 216 125+ 251 125+
7 75 42 107 77 65 112 98 147 5 182 125+ 217 125+ 252 125+
8 3 43 5 78 82 113 81 148 42 183 125+ 218 125+ 253 125+
9 61 44 66 79 49 114 69 149 5 184 125+ 219 125+ 254 125+
10 23 45 102 80 23 115 33 150 12 185 125+ 220 125+ 255 125+
11 39 46 45 81 87 116 60 151 4 186 125+ 221 125+ 256 125+
12 8 47 80 82 60 117 83 152 121 187 125+ 222 125+ 257 125+
13 25 48 74 83 25 118 119 153 100 188 125+ 223 125+ 258 125+
14 1 49 57 84 3 119 27 154 75 189 125+ 224 125+ 259 125+
15 59 50 62 85 11 120 122 155 60 190 125+ 225 125+ 260 125+
16 1 51 89 86 36 121 79 156 1 191 125+ 226 125+ 261 125+
17 80 52 109 87 84 122 0 157 125+ 192 125+ 227 125+ 262 125+
18 85 53 12 88 70 123 54 158 125+ 193 125+ 228 125+ 263 125+
19 1 54 100 89 84 124 115 159 125+ 194 125+ 229 125+ 264 125+
20 10 55 104 90 5 125 119 160 125+ 195 125+ 230 125+ 265 125+
21 110 56 59 91 96 126 0 161 125+ 196 125+ 231 125+ 266 125+
22 55 57 101 92 54 127 16 162 125+ 197 125+ 232 125+ 267 125+
23 1 58 75 93 65 128 11 163 125+ 198 125+ 233 125+ 268 125+
24 89 59 94 94 25 129 10 164 125+ 199 125+ 234 125+ 269 125+
25 33 60 102 95 46 130 16 165 125+ 200 125+ 235 125+ 270 125+
26 57 61 55 96 6 131 7 166 125+ 201 125+ 236 125+ 271 125+
27 5 62 71 97 25 132 95 167 125+ 202 125+ 237 125+ 272 125+
28 106 63 105 98 10 133 19 168 125+ 203 125+ 238 125+ 273 125+
29 29 64 99 99 47 134 1 169 125+ 204 125+ 239 125+ 274 125+
30 9 65 75 100 18 135 86 170 125+ 205 125+ 240 125+ 275 125+
31 46 66 6 101 83 136 5 171 125+ 206 125+ 241 125+ 276 125+
32 5 67 99 102 91 137 8 172 125+ 207 125+ 242 125+ 277 125+
33 115 68 61 103 55 138 63 173 125+ 208 125+ 243 125+ 278 125+
34 51 69 28 104 72 139 83 174 125+ 209 125+ 244 125+ 279 125+
35 68 70 106 105 97 140 9 175 125+ 210 125+ 245 125+ 280 125+

S/N = Serial Numbers; ST = Survival Times

Data Obtained from University of Calabar Teaching Hospital (UCTH)

S/N ST S/N ST S/N ST S/N ST S/N ST S/N ST S/N ST S/N ST
281 125+      
282 125+      
283 125+      
284 125+      
285 125+      
286 125+      
287 125+      
288 125+      
289 125+      
290 125+      
291 125+      
292 125+      
293 125+      
294 125+      
295 125+      
296 125+      
297 125+      
298 125+      
299 125+      
300 125+      
301 125+      
302 125+      
303 125+      
304 125+      
305 125+      
306 125+      
307 125+      
308 125+      
309 125+      
310 125+      
311 125+      
312 125+      
313      
314      
315      

S/N = Serial Numbers; ST = Survival Times

Data Obtained from University of Calabar Teaching Hospital (UCTH)

Article Statistics

Track views and downloads to measure the impact and reach of your article.

0

PDF Downloads

[views]

Metrics

PlumX

Altmetrics

Paper Submission Deadline

Track Your Paper

Enter the following details to get the information about your paper

GET OUR MONTHLY NEWSLETTER