A Conceptual Framework on the Relationship between Artificial Intelligence Adoption, Data-Driven Decision-Making and Zakat Management Efficiency

Authors

Izatul Akmar Ismail

Academy of Contemporary Islamic Studies (ACIS), University Teknologi MARA (UiTM), Cawangan Kedah, Kampus Sungai Petani, 08400, Kedah, Malaysia Islamic Business School, University Utara Malaysia, 06010, Sintok, Malaysia (Malaysia)

Mohd Adib Abd Muin

Faculty of Business Management, University Teknologi MARA (UiTM), Cawangan Kedah, Kampus Sungai Petani, 08400, Kedah, Malaysia (Malaysia)

Norhasyikin Rozali

Faculty of Business Management, University Teknologi MARA (UiTM), Cawangan Kedah, Kampus Sungai Petani, 08400, Kedah, Malaysia (Malaysia)

Noor Syahidah Mohamad Akhir

Academy of Contemporary Islamic Studies (ACIS), University Teknologi MARA (UiTM), Cawangan Kedah, Kampus Sungai Petani, 08400, Kedah, Malaysia Islamic Business School, University Utara Malaysia, 06010, Sintok, Malaysia (Malaysia)

Daing Maruak Sadek

Academy of Contemporary Islamic Studies (ACIS), University Teknologi MARA (UiTM), Cawangan Kedah, Kampus Sungai Petani, 08400, Kedah, Malaysia Islamic Business School, University Utara Malaysia, 06010, Sintok, Malaysia (Malaysia)

Amin Che Ahmat

Academy of Contemporary Islamic Studies (ACIS), University Teknologi MARA (UiTM), Cawangan Kedah, Kampus Sungai Petani, 08400, Kedah, Malaysia Islamic Business School, University Utara Malaysia, 06010, Sintok, Malaysia (Malaysia)

Article Information

DOI: 10.47772/IJRISS.2025.910000449

Subject Category: Artificial Intelligence

Volume/Issue: 9/10 | Page No: 5490-5500

Publication Timeline

Submitted: 2025-10-12

Accepted: 2025-10-20

Published: 2025-11-15

Abstract

Zakat plays a vital role in Islamic social finance, serving as a mechanism for poverty alleviation and social welfare. However, its management continues to face challenges including inefficiency, limited transparency, and low stakeholder trust. Conventional approaches often hinder timely collection and equitable distribution, underscoring the need for innovative, Shariah-compliant technological solutions. This study develops a conceptual framework that examines the relationship between Artificial Intelligence (AI) adoption, data-driven decision-making (DDDM), and zakat management efficiency. Drawing upon General Systems Theory (GST), the framework positions DDDM as a mediating mechanism that translates AI-driven technological capabilities such as predictive analytics, real-time monitoring, and machine learning into evidence-based, ethical, and transparent decision-making processes. Using a narrative review of Scopus-indexed literature (2019– 2024), the study synthesizes theoretical and empirical insights to demonstrate that AI adoption enhances institutional efficiency primarily through the mediating role of DDDM, which strengthens accountability, fairness, and governance in zakat administration. The study contributes theoretically by extending systems theory into Islamic social finance and practically by providing policymakers and zakat institutions with a Shariah-aligned model for responsible AI integration that promotes transparency, trust, and socio-economic justice.

Keywords

Zakat, Artificial Intelligence (AI), Data-Driven Decision-Making (DDDM)

Downloads

References

1. Ashurov, S., Musa bin Syed Jaafar Alhabshi, S., Abdullah Othman, A. H., Habibullah, M., & Muhamad Yusof, M. S. (2020). Developing a conceptual framework for zakat collection and distribution impact on social welfare through implications of SDGs. In Impact of Zakat on Sustainable Economic Development (pp. 120–138). IGI Global. https://doi.org/10.4018/978-1-7998-3452-6.ch009 [Google Scholar] [Crossref]

2. Ashurov, S., Abdullah Othman, A. H., Syed Jaafar Alhabshi, S. M. B., Habibullah, M., & Muhamad Yusof, M. S. (2022). Developing a conceptual framework for zakat collection and distribution impact on social welfare through implications of SDGs. In Research Anthology on Measuring and Achieving Sustainable Development Goals (Vol. 2, pp. 422–440). IGI Global. https://doi.org/10.4018/978-1-66843885-5.ch022 [Google Scholar] [Crossref]

3. Awang Abu Bakar, N. S., Yahya, N., Abdullah, L. M., Abdul Aziz, M. S., Baharuden, A. F., Rosli, R., & Jumaan, I. A. (2024). Assessments of the data management practices in zakat institutions in Malaysia: A concept paper. In Proceedings of the 2024 10th International Conference on Computing, Engineering and Design (ICCED 2024). IEEE. https://doi.org/10.1109/ICCED64257.2024.10982882 [Google Scholar] [Crossref]

4. Beik, I. S., Swandaru, R., & Rizkiningsih, P. (2021). Utilization of digital technology for zakat development. In Islamic FinTech: Insights and Solutions (pp. 231–248). Springer. https://doi.org/10.1007/978-3-030-45827-0_13 [Google Scholar] [Crossref]

5. Farrokhvar, A., Ansari, S., & Kamali, M. (2018). Predictive models for charitable giving using machine learning techniques. PLOS ONE, 13(10), e0203928. https://doi.org/10.1371/journal.pone.0203928 [Google Scholar] [Crossref]

6. Ferrari, R. (2015). Writing narrative style literature reviews. Medical Writing, 24(4), 230–235. https://doi.org/10.1179/2047480615Z.000000000329 [Google Scholar] [Crossref]

7. Ferrell, O. C., Harrison, D. E., Ferrell, L. K., Ajjan, H., & Hochstein, B. W. (2024). A theoretical framework to guide AI ethical decision making. AMS Review, 14(1–2), 53–67. https://doi.org/10.1007/s13162-024-00275-9 [Google Scholar] [Crossref]

8. Green, B. N., Johnson, C. D., & Adams, A. (2006). Writing narrative literature reviews for peerreviewed journals: Secrets of the trade. Journal of Chiropractic Medicine, 5(3), 101–117. https://doi.org/10.1016/S0899-3467(07)60142-6 [Google Scholar] [Crossref]

9. Hangl, J., Krause, S., & Behrens, V. J. (2023). Drivers, barriers and social considerations for AI adoption in SCM. Technology in Society, 74, 102299. https://doi.org/10.1016/j.techsoc.2023.102299 [Google Scholar] [Crossref]

10. Hadi, R., Shafrani, Y. S., Lamela, D., Riyadi, S., & Basrowi. (2024). Digital zakat management, transparency in zakat reporting, and the zakat payroll system toward zakat management accountability and its implications on zakat growth acceleration. International Journal of Data and Network Science, 8, 597-608. https://doi.org/10.5267/j.ijdns.2023.8.025 [Google Scholar] [Crossref]

11. Ines, J. C., Tolentino, M. Q., Cruz, J. C. D., Estabillo, R., Madlambayan, A. M., Mirano, C. E., & [Google Scholar] [Crossref]

12. Vergara, J. A. (2024). The Role of AI in Enhancing Decision-Making in Small and Medium Enterprises (SMEs). In 2024 2nd International Conference on Computing and Data Analytics (ICCDA) (pp. 1-4). IEEE. [Google Scholar] [Crossref]

13. Khan, T., Emon, M. M. H., Rahman, M. A., Aziz, A., & Nath, A. (2024). Exploring key factors in predicting the adoption of AI technologies in e-commerce firms. In Proceedings of the 27th International Conference on Computer and Information Technology (ICCIT 2024) (pp. 2026–2031). IEEE. https://doi.org/10.1109/ICCIT64611.2024.11022486 [Google Scholar] [Crossref]

14. Kozhakhmetova, A., Mamyrbayev, A., Zhidebekkyzy, A., & Bilan, S. (2024). Assessing the impact of artificial intelligence on project efficiency enhancement. Knowledge and Performance Management, 8(2), 109–126. https://doi.org/10.21511/kpm.08(2).2024.09 [Google Scholar] [Crossref]

15. Mkhize, T., Oosterwyk, G., & Kautondokwa, P. (2023). Examining the barriers and enablers of AI adoption in a multimedia organization. EPiC Series in Computing, 93, 117–128. https://doi.org/10.29007/mgdl [Google Scholar] [Crossref]

16. Panduro-Ramirez, J., Damodaraswamy, A., Gehlot, A., Srinivas, D., Hussein, A., & Alazzam, M. [Google Scholar] [Crossref]

17. B. (2023). Exploring the technological barriers of AI in management decision making. In Proceedings of the 2023 3rd International Conference on Advance Computing and Innovative Technologies in [Google Scholar] [Crossref]

18. Engineering (ICACITE 2023) (pp. 828–832). IEEE. https://doi.org/10.1109/ICACITE57410.2023.10182882 [Google Scholar] [Crossref]

19. Pathak, A., & Bansal, V. (2024). Factors influencing the readiness for artificial intelligence adoption in Indian insurance organizations. In IFIP Advances in Information and Communication Technology (Vol. 698, pp. 43–55). Springer. https://doi.org/10.1007/978-3-031-50192-0_5 [Google Scholar] [Crossref]

20. Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039 [Google Scholar] [Crossref]

21. Usmani, U. A., Usmani, M. U., & Usmani, A. Y. (2023). Enabling intelligent decision making: Harnessing advanced management strategies for enhanced organizational efficiency and effectiveness. In Proceedings of the 4th IEEE International Conference on Computing, Communication, and Intelligent Systems (ICCCIS 2023) (pp. 601–608). IEEE. https://doi.org/10.1109/ICCCIS60361.2023.10425257 [Google Scholar] [Crossref]

22. Von Bertalanffy, L. (1968). General System Theory: Foundations, Development. New York: George Braziller. [Google Scholar] [Crossref]

23. Xiao, L., Xiao, Y., & He, R. (2024). The research and development investment management in technology enterprises under artificial intelligence. IEEE Access, 12, 190936–190944. https://doi.org/10.1109/ACCESS.2024.3518070 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles