Mathematics as Ontological–Cognitive Participation: Reconstructing Ethical and Metaphysical Foundations within a Humanized Mathematical Universe

Authors

Md. Zahir Alam

Department of Philosophy, Shachindra College, Pukra-3351, Habiganj (Bangladesh)

Jahangir Alam

Department of Computer Science and Mathematics, Bangladesh Agricultural University, Mymensingh-2202 (Bangladesh)

Zawad Rami

Department of Languages, Bangladesh Agricultural University, Mymensingh-2202 (Bangladesh)

Article Information

DOI: 10.47772/IJRISS.2025.91100302

Subject Category: Philosophy

Volume/Issue: 9/11 | Page No: 3874-3885

Publication Timeline

Submitted: 2025-12-01

Accepted: 2025-12-05

Published: 2025-12-08

Abstract

The status of mathematics on the ontological or epistemological level is still undetermined even though it has been debated by realist, constructivist and formalist traditions. This paper pursues a dual-aspect view of mathematics with the Humanized Mathematical Universe (HMU), where it is assumed that mathematics lives as metaphysical structure and as embodied cognitive activity. Through reconstructing some foundational positions, the paper illustrates how currently available frameworks fail to account for mathematical universality and (human) access to mathematical structure as well as their ethical implications. According to the HMU model, mathematical entia are cosmological potentialities needing human cognition for actualization, causing a participative ontological relationship between mind and cosmos. The analysis adds that doing logic today is morally significant as a practice because of its role in the mechanics of algorithmic governance, artificial intelligence, genetic computation, and financial automation. The results reveal that mathematical warrant needs to encompass three kinds of evaluation: structural congruence, epistemic deeming and normative adequacy. Hence HMU synthesis refashions mathematics as epistemologically unified, where ontology, cognition and ethics are mutually enmeshed. The thesis argues that mathematics should be considered not as a neutral formal language,  but as a metaphysically real and ethically responsible world-building process in which we participate.

Keywords

Philosophy of mathematics, embodied cognition, metaphysical realism

Downloads

References

1. Aboites, E. (2022). Philosophy of mathematical existence and the ontological foundations of abstract objects. Synthese, 200, 276–295. https://doi.org/10.1007/s11229-020-02939-y [Google Scholar] [Crossref]

2. Allegrini, P., Grigolini, P., & West, B. J. (2003). Beyond the quantum: A new view on consciousness. Foundations of Physics, 33(3), 349–370. https://doi.org/10.1023/A:1022944622207 [Google Scholar] [Crossref]

3. Baggio, G. (2025). Embodied mathematical cognition: Neural grounding of abstract structure. Cognitive Processing, 26(1), 45–59. https://doi.org/10.1007/s10339-024-00710-1 [Google Scholar] [Crossref]

4. Bărboianu, C. (2019). The unreasonable effectiveness of mathematics revisited. Philosophia Scientiae, 23(1), 85–108. https://doi.org/10.4000/philosophiascientiae.1613 [Google Scholar] [Crossref]

5. Belbase, S. (2019). Can mathematics be socially constructed? A review of social constructivism. International Journal of Education in Mathematics, Science and Technology, 7(4), 295–307. https://doi.org/10.46328/ijemst.v7i4.815 [Google Scholar] [Crossref]

6. Blanchard, P., & Longo, G. (2021). Mathematical incompleteness and the foundations of physics. Synthese, 198, 377–403. https://doi.org/10.1007/s11229-020-02928-1 [Google Scholar] [Crossref]

7. Chiodo, M. S., & Müller, V. C. (2024). The ethics of mathematical practice: Moral responsibility in algorithmic societies. Philosophy & Technology, 37(2), 45–62. https://doi.org/10.1007/s13347-023-00631-0 [Google Scholar] [Crossref]

8. Ebert, P. (2007). Mathematical objects and the epistemological challenge. Philosophical Studies, 132(3), 473–498. https://doi.org/10.1007/s11098-006-9082-7 [Google Scholar] [Crossref]

9. Ernest, P. (2020). The ethics of mathematics: Is mathematics harmful? Educational Studies in Mathematics, 104(2), 199–213. https://doi.org/10.1007/s10649-020-09936-0 [Google Scholar] [Crossref]

10. Ferreirós, J. (2017). Mathematical knowledge and the interplay of practices. Foundations of Science, 22(1), 21–35. https://doi.org/10.1007/s10699-015-9408-1 [Google Scholar] [Crossref]

11. Fillion, N. (2012). The explanatory power of mathematics: Using mathematics to make sense of the world. Synthese, 187(2), 685–704. https://doi.org/10.1007/s11229-011-0031-2 [Google Scholar] [Crossref]

12. Friedman, A. (2024). Cognitive embodiment and abstraction in mathematical thought. Review of Philosophy and Psychology, 15(1), 77–94. https://doi.org/10.1007/s13164-022-00637-2 [Google Scholar] [Crossref]

13. Glattfelder, J. (2019). Information—Consciousness—Reality: How a New Understanding of the Universe Can Help Answer Age-Old Questions. Springer. https://doi.org/10.1007/978-3-030-03633-1 [Google Scholar] [Crossref]

14. Gupta, A. (2021). Consciousness and the non-computable mind: Revisiting Penrose. Minds and Machines, 31(2), 321–342. https://doi.org/10.1007/s11023-020-09542-w [Google Scholar] [Crossref]

15. Hartimo, M., & Rytilä, J. (2023). Mathematics as practice: Historicist and phenomenological approaches to mathematical knowledge. Synthese, 201, 112–130. https://doi.org/10.1007/s11229-022-03673-8 [Google Scholar] [Crossref]

16. Hassan, D. M. K., & Rami, Z. (2024). Exploring Nuances in Second Language Acquisition: An Error Analysis Perspective. Migration Letters, 21(4), 294–298. https://doi.org/10.59670/ml.v21i4.7319 [Google Scholar] [Crossref]

17. Jonas, M. (2023). Mathematical realism and epistemic access: Contemporary debates revisited. Synthese, 200, 241–260. https://doi.org/10.1007/s11229-020-02928-1 [Google Scholar] [Crossref]

18. Kant, V., & Sarikaya, M. (2020). Ethics of algorithmic decision-making: Toward a mathematical ethics. AI & Society, 35(3), 527–539. https://doi.org/10.1007/s00146-019-00915-4 [Google Scholar] [Crossref]

19. Kilpatrick, J. (1990). Constructivism in mathematics education. Journal for Research in Mathematics Education, 21(4), 337–350. https://doi.org/10.2307/749532 [Google Scholar] [Crossref]

20. Lakoff, G., & Núñez, R. (2000). Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being. Basic Books. [Google Scholar] [Crossref]

21. Lerman, S. (1989). Constructivism, mathematics, and mathematics education. Educational Studies in Mathematics, 20(2), 211–223. https://doi.org/10.1007/BF00315601 [Google Scholar] [Crossref]

22. Longo, G. (2005). Why do we need mathematics? Mathematical Structures in Computer Science, 15(1), 1–25. https://doi.org/10.1017/S0960129505004362 [Google Scholar] [Crossref]

23. Milon, M. R. K., & Ali, T. M. (2023). From language movement to language policy: A critical examination of English in Bangladeshi tertiary education. ICRRD Journal, 4(4), 101–115. https://doi.org/10.53272/icrrd.v4i4.1 [Google Scholar] [Crossref]

24. Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 1–21. https://doi.org/10.1177/2053951716679679 [Google Scholar] [Crossref]

25. Monte-Serrat, D., & Cattani, M. (2023). Algorithmic governance and mathematical rationality. AI & Society, 38(1), 221–234. https://doi.org/10.1007/s00146-021-01154-8 [Google Scholar] [Crossref]

26. Müller, V. C., & Chiodo, M. S. (2023). Mathematical responsibility in AI systems. Philosophia, 51(4), 1523–1545. https://doi.org/10.1007/s11406-022-00588-8 [Google Scholar] [Crossref]

27. Núñez, R., & Winter, B. (2020). Embodied mathematical cognition. Topics in Cognitive Science, 12(4), 1193–1209. https://doi.org/10.1111/tops.12538 [Google Scholar] [Crossref]

28. Paseau, A., & Baker, A. (2023). Indispensability arguments. In Stanford Encyclopedia of Philosophy. https://doi.org/10.48550/arXiv.2308.04871 [Google Scholar] [Crossref]

29. Pedersen, S. A. (2021). Realism in mathematics and the epistemic access problem. Synthese, 198(5), 4419–4436. https://doi.org/10.1007/s11229-019-02471-5 [Google Scholar] [Crossref]

30. Rami, Z., Pathan, M. A. K., Halder, D. P., Arifeen, M. S., & Shatnawi, H. (2025). Reforming tertiary examination systems in Bangladesh: Towards a competency-based, inclusive, and equitable future. International Journal of Research and Innovation in Social Science, 9(10). https://doi.org/10.47772/IJRISS.2025.910000443 [Google Scholar] [Crossref]

31. Rami, Z. (2024). An evaluation of examination system at tertiary level: An empirical case study in Bangladesh [Master’s thesis, Aligarh Muslim University]. ProQuest Dissertations & Theses, 31639499. Retrieved from https://www.proquest.com/docview/3142700346/abstract [Google Scholar] [Crossref]

32. Rami, Z., Bhan, A., Vijoy, P., Bijale, M., & Sharma, V. (2024). Mapping holistic growth: Developing a comprehensive student development scale. European Economic Letters, 14(3), 793–799. Retrieved from https://www.eelet.org.uk/index.php/journal/article/view/1830 [Google Scholar] [Crossref]

33. Rami, Z. ., Hassan, D. M. K. ., & Shatnawi, H. (2023). Pedagogy of Communicative and Technical English for Engineering Students at Tertiary Level: A Case Study in Bangladesh. Migration Letters, 20(S8), 1557–1575. https://doi.org/10.59670/ml.v20iS8.6429 [Google Scholar] [Crossref]

34. Ray, S., Mukherjee, A., & Hazra, S. (2022). Assessment reforms in South Asian higher education. Assessment in Education, 29(3), 314–332. https://doi.org/10.1080/0969594X.2021.1953991 [Google Scholar] [Crossref]

35. Rittberg, J. (2022). Mathematical abstraction in algorithmic governance. Ethics and Information Technology, 24(1), 1–15. https://doi.org/10.1007/s10676-021-09625-3 [Google Scholar] [Crossref]

36. Rodin, A. (2022). Mathematical conceptual change and structural holism. Synthese, 200, 190–212. https://doi.org/10.1007/s11229-020-02939-y [Google Scholar] [Crossref]

37. Rytilä, J. (2021). Realism, objectivity, and the ontology of mathematical entities. Philosophia Mathematica, 29(3), 345–367. https://doi.org/10.1093/philmat/nkab005 [Google Scholar] [Crossref]

38. Sabena, C. (2018). Embodied cognition and mathematical meaning. Educational Studies in Mathematics, 98(1), 41–59. https://doi.org/10.1007/s10649-017-9814-0 [Google Scholar] [Crossref]

39. Shakespeare, T. (2023). Penrose, consciousness, and non-computability. Journal of Consciousness Studies, 30(1-2), 75–98. [Google Scholar] [Crossref]

40. Sfard, A. (1991). On the dual nature of mathematical conceptions. Educational Studies in Mathematics, 22(1), 1–36. [Google Scholar] [Crossref]

41. Skovsmose, O. (2020). Mathematics, ethics, and democracy. Springer. https://doi.org/10.1007/978-3-030-35605-5 [Google Scholar] [Crossref]

42. Simeonov, P. (2010). Integral biomathics: A new view of mathematics, life, and cognition. Progress in Biophysics and Molecular Biology, 102(2–3), 85–121. https://doi.org/10.1016/j.pbiomolbio.2010.08.002 [Google Scholar] [Crossref]

43. Soto-Andrade, J. (2020). Mathematics and the texture of reality. Foundations of Science, 25, 877–903. https://doi.org/10.1007/s10699-019-09635-9 [Google Scholar] [Crossref]

44. Startup, B. (2024). The metaphysics of mathematical realism. Synthese, 202, 111–129. [Google Scholar] [Crossref]

45. Sterpetti, F. (2018). Access to abstract entities. Synthese, 195(6), 2623–2642. https://doi.org/10.1007/s11229-017-1574-6 [Google Scholar] [Crossref]

46. Stemhagen, K. (2007). The social construction of mathematical knowledge. Philosophy of Mathematics Education Journal, 21, 1–17. [Google Scholar] [Crossref]

47. Szabó, K. (2023). Mathematical Platonism after Gödel. Axiomathes, 33(4), 733–749. https://doi.org/10.1007/s10516-022-09643-3 [Google Scholar] [Crossref]

48. Tall, D., & Katz, M. (2014). A cognitive analysis of Cauchy’s continuum. Educational Studies in Mathematics, 87(3), 271–289. [Google Scholar] [Crossref]

49. Trobok, M. (2006). Neo-Platonism in mathematics. Synthese, 151(1), 61–76. https://doi.org/10.1007/s11229-004-6296-y [Google Scholar] [Crossref]

50. Tsamados, A., Aggarwal, N., Cowls, J., Morley, J., & Floridi, L. (2020). The ethics of AI governance. AI & Society, 35(1), 195–210. https://doi.org/10.1007/s00146-019-00987-z [Google Scholar] [Crossref]

51. Weir, A. (2023). Neo-logicism and mathematical ontology. Synthese. https://doi.org/10.1007/s11229-022-03680-9 [Google Scholar] [Crossref]

52. Winter, B., & Yoshimi, J. (2020). Contrastive embodiment in mathematical cognition. Cognitive Linguistics, 31(4), 563–596. https://doi.org/10.1515/cog-2019-0046 [Google Scholar] [Crossref]

53. Woźny, M. (2018). Max Tegmark’s Mathematical Universe Hypothesis reconsidered. Foundations of Science, 23(4), 763–783. https://doi.org/10.1007/s10699-017-9558-0 [Google Scholar] [Crossref]

54. Wolff, P. (2019). Mathematical realism and contemporary metaphysics. Synthese, 196(3), 1025–1042. https://doi.org/10.1007/s11229-017-1578-2 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles