Time-Varying Electrical Loads: Analyzing Household Energy Consumption, Carbon Emissions, and Strategies for Load Management

Authors

Kimberly L. Mandalihan

College of Teacher Education, Mariano Marcos State University (Philippines)

Regie Boy B. Fabro

College of Teacher Education, Mariano Marcos State University (Philippines)

Argie S. Manuel

College of Teacher Education, Mariano Marcos State University (Philippines)

Peter John B. Ladran

College of Teacher Education, Mariano Marcos State University (Philippines)

Dariel Justin V. Daquioag

College of Teacher Education, Mariano Marcos State University (Philippines)

Article Information

DOI: 10.47772/IJRISS.2025.91100527

Subject Category: Economics

Volume/Issue: 9/11 | Page No: 6737-6754

Publication Timeline

Submitted: 2025-12-06

Accepted: 2025-12-12

Published: 2025-12-22

Abstract

This study investigates the impact of time-varying electrical loads on household energy consumption and carbon emissions, with the goal of developing strategies for load management to reduce carbon footprints. Conducted in the residential households of San Nicolas, Ilocos Norte, Philippines, the research employed a descriptive-correlational design and a mixed-methods approach. Quantitative data on energy usage and carbon emissions were collected through electricity bills and energy monitoring devices, while qualitative insights were gathered through surveys and focus group discussions. Statistical analysis and thematic analysis were used to identify household energy consumption patterns, quantify carbon emissions during peak and off-peak hours, and evaluate strategies for shifting energy-intensive activities.

Keywords

Household Energy Consumption, Carbon Emissions, Load Management

Downloads

References

1. Bandari, N., Raghavendra, K. V. G., Heo, S., Kumar, S. V. S. V. P. D., Uddin, W., Sama, L. K. R., ... & Kim, H. J. (2020). Efficient electricity management system for optimal peak/off-peak hour pricing. Electronics, 9(8), 1189. https://doi.org/10.3390/electronics9081189 [Google Scholar] [Crossref]

2. Mizobuchi, K., & Hiroaki, Y. (2024). Impact of time-saving technology on household electricity consumption: An automatic vacuum cleaner distribution experiment in Japan. Ecological Economics, 223, 108231. https://doi.org/10.1016/j.ecolecon.2024.108231 [Google Scholar] [Crossref]

3. Sumper, A., & Ferreira, P. (2020). Electricity: A new open access journal. Electricity, 1(1), 4. http://dx.doi.org/10.3390/electricity1010004 [Google Scholar] [Crossref]

4. Adu, D., Jianguo, D., Asomani, S. N., & Abbey, A. (2024). Energy generation and carbon dioxide emission—The role of renewable energy for green development. Energy Reports, 12, 1420-1430. https://doi.org/10.1016/j.egyr.2024.07.013 [Google Scholar] [Crossref]

5. Spunei, E., Frumușanu, N. M., & Martin, M. (2024). Study on Household-Level Electricity Consumption of Domestic Consumers in Romania: The Need to Check the Electrical Installation. Sustainability, 16(10), 4203. https://doi.org/10.3390/su16104203 [Google Scholar] [Crossref]

6. Abdullah, M. R. T. L., Nuri Al-Amin Endut, M., Che Jamaludin, F. I., Akbar, J. U. D., & Asra. (2022). Individual Energy Consumption Behavior Leads to Energy Sustainability in Malaysia. Sustainability, 14(8), 4734. https://doi.org/10.3390/su14084734 [Google Scholar] [Crossref]

7. Oteng-Abayie, E. F., Asaki, F. A., Duodu, E., Mahawiya, S., & Gyamfi, B. A. (2024). Decomposition analysis of electricity generation on carbon dioxide emissions in Ghana. Heliyon, 10(7). https://doi.org/10.1016/j.heliyon.2024.e28212 [Google Scholar] [Crossref]

8. Zhang, H., Chen, B., Li, Y., Geng, J., Li, C., Zhao, W., & Yan, H. (2022). Research on medium-and long-term electricity demand forecasting under climate change. Energy Reports, 8, 1585-1600. https://doi.org/10.1016/j.egyr.2022.02.210 [Google Scholar] [Crossref]

9. Song, Y., Shahzad, U., & Paramati, S. R. (2023). Impact of energy infrastructure investments on renewable electricity generation in major Asian developing economies. Australian Economic Papers, 62(1), 1-23. https://doi.org/10.1111/1467-8454.12282 [Google Scholar] [Crossref]

10. Bastida-Molina, P., Torres-Navarro, J., Honrubia-Escribano, A., Gallego-Giner, I., & Gómez-Lázaro, E. (2023). A detailed analysis of electricity consumption at the University of Castilla-La Mancha (Spain). Energy and Buildings, 289, 113046. https://doi.org/10.1016/j.enbuild.2023.113046 [Google Scholar] [Crossref]

11. Sundah, J., Pongoh, D. S., Pinangkaan, A. J., Majampoh, W. V., Gerung, A., & Angka, O. O. (2024). Electric Energy Savings for Household Appliances: Small Steps, Big Impact. Jurnal Syntax Admiration, 5(11), 4826-4836. http://dx.doi.org/10.46799/jsa.v5i11.1767 [Google Scholar] [Crossref]

12. Kabir, M., Habiba, U. E., Khan, W., Shah, A., Rahim, S., De los Rios-Escalante, P. R., … & Shafiq, M. (2023). Climate change due to increasing concentration of carbon dioxide and its impacts on environment in 21st century; a mini review. Journal of King Saud University-Science, 35(5), 102693. https://doi.org/10.1016/j.jksus.2023.102693 [Google Scholar] [Crossref]

13. Wassenius, E., & Crona, B. I. (2022). Adapting risk assessments for a complex future. One Earth, 5(1), 35-43. https://doi.org/10.1016/j.oneear.2021.12.004 [Google Scholar] [Crossref]

14. Marchi, L., Vodola, V., Visconti, C., Gaspari, J., & Antonini, E. (2021). Contribution of individual behavioural change on household carbon footprint. In E3S Web of Conferences (Vol. 263, p. 05024). EDP Sciences. https://doi.org/10.1051/e3sconf/202126305024 [Google Scholar] [Crossref]

15. Never, B., Kuhn, S., Fuhrmann-Riebel, H., Albert, J. R., Gsell, S., Jaramillo, M., & Sendaza, B. (2022). Energy saving behaviours of middle class households in Ghana, Peru and the Philippines. Energy for Sustainable Development, 68, 170-181. https://doi.org/10.1016/j.esd.2022.03.003 [Google Scholar] [Crossref]

16. IEA, P. (2022). World energy outlook 2022. Paris, France: International Energy Agency (IEA). . http://dx.doi.org/10.1016/j.esd.2022.03.003 [Google Scholar] [Crossref]

17. Bishoge, O. K., & Mvile, B. N. (2024). Energy-saving practices among postgraduate students: A case study at the Pan African University. https://doi.org/10.29333/aquademia/15037 [Google Scholar] [Crossref]

18. Kasavan, S., Ali, S. S. S., & Siron, R. (2021). The Behaviour of Households Towards Electricity Consumption: A Case Study at Seremban. Planning Malaysia, 19. http://dx.doi.org/10.21837/pm.v19i18.1047 [Google Scholar] [Crossref]

19. Wang, T., Zhao, Q., Gao, W., & He, X. (2024). Research on energy consumption in household sector: a comprehensive review based on bibliometric analysis. Frontiers in Energy Research, 11, 1209290. https://doi.org/10.3389/fenrg.2023.1209290 [Google Scholar] [Crossref]

20. Weyman-Jones, T., & Boucinha, J. M. (2024). Behavioral Efficiency and Residential Electricity Consumption: A Microdata Study. Sustainability (2071-1050), 16(15). https://doi.org/10.3390/su16156646 [Google Scholar] [Crossref]

21. Pop, R. A., Dabija, D. C., Pelău, C., & Dinu, V. (2022). Usage intentions, attitudes, and behaviors towards energy-efficient applications during the COVID-19 pandemic. Journal of Business Economics and Management (JBEM), 23(3), 668-689. https://doi.org/10.3846/jbem.2022.16959 [Google Scholar] [Crossref]

22. Elasu, J., Ntayi, J. M., Adaramola, M. S., & Buyinza, F. (2023). Drivers of household transition to clean energy fuels: A systematic review of evidence. Renewable and Sustainable Energy Transition, 3, 100047. https://doi.org/10.1016/j.rset.2023.100047 [Google Scholar] [Crossref]

23. Guta, D., Baumgartner, J., Jack, D., Carter, E., Shen, G., Orgill-Meyer, J., … & Zerriffi, H. (2022). A systematic review of household energy transition in low and middle income countries. Energy Research & Social Science, 86, 102463. https://doi.org/10.1016/j.erss.2021.102463 [Google Scholar] [Crossref]

24. McAndrew, R., Mulcahy, R., Gordon, R., & Russell-Bennett, R. (2021). Household energy efficiency interventions: A systematic literature review. Energy Policy, 150, 112136. https://doi.org/10.1016/j.enpol.2021.112136 [Google Scholar] [Crossref]

25. Liu, L., Qu, J., Maraseni, T. N., Niu, Y., Zeng, J., Zhang, L., & Xu, L. (2020). Household CO2 emissions: Current status and future perspectives. International Journal of Environmental Research and Public Health, 17(19), 7077. https://doi.org/10.3390/ijerph17197077 [Google Scholar] [Crossref]

26. Kaufmann, M., Veenman, S., Haarbosch, S., & Jansen, E. (2023). How policy instruments reproduce energy vulnerability-A qualitative study of Dutch household energy efficiency measures. Energy Research & Social Science, 103, 103206. https://doi.org/10.1016/j.erss.2023.103206 [Google Scholar] [Crossref]

27. Zheng, J., Dang, Y., & Assad, U. (2024). Household energy consumption, energy efficiency, and household income–Evidence from China. Applied Energy, 353, 122074. https://doi.org/10.1016/j.apenergy.2023.122074 [Google Scholar] [Crossref]

28. Goldstein, B., Gounaridis, D., & Newell, J. P. (2020). The carbon footprint of household energy use in the United States. Proceedings of the National Academy of Sciences, 117(32), 19122-19130. https://doi.org/10.1073/pnas.1922205117 [Google Scholar] [Crossref]

29. Su, S., Ding, Y., Li, G., Li, X., Li, H., Skitmore, M., & Menadue, V. (2023). Temporal dynamic assessment of household energy consumption and carbon emissions in China: From the perspective of occupants. Sustainable Production and Consumption, 37, 142-155. https://doi.org/10.1016/j.spc.2023.02.014 [Google Scholar] [Crossref]

30. Mainimo, E. N., Okello, D. M., Mambo, W., & Mugonola, B. (2022). Drivers of household demand for cooking energy: a case of Central Uganda. Heliyon, 8(3). https://doi.org/10.1016/j.heliyon.2022.e09118 [Google Scholar] [Crossref]

31. Jafari, H. (2023). Energy storage by improving energy-efficiency of electricity home appliances under governmental supporting policies: a game-theoretic approach. Journal of Energy Storage, 63, 106972. https://doi.org/10.1016/j.est.2023.106972 [Google Scholar] [Crossref]

32. Kumar, P., Caggiano, H., Shwom, R., Felder, F. A., & Andrews, C. J. (2023). Saving from home! How income, efficiency, and curtailment behaviors shape energy consumption dynamics in US households?. Energy, 271, 126988. https://doi.org/10.1016/j.energy.2023.126988 [Google Scholar] [Crossref]

33. Piao, X., & Managi, S. (2023). Household energy-saving behavior, its consumption, and life satisfaction in 37 countries. Scientific reports, 13(1), 1382. https://www.nature.com/articles/s41598-023-28368-8 [Google Scholar] [Crossref]

34. Mäkivierikko, A., Siepelmeyer, H., Shahrokni, H., Enarsson, D., & Kordas, O. (2023). Reducing electricity peak loads through ‘pause hours’-a community-based behavioural demand response approach. Journal of Cleaner Production, 408, 137064. https://doi.org/10.1016/j.jclepro.2023.137064 [Google Scholar] [Crossref]

35. Brännlund, R., & Vesterberg, M. (2021). Peak and off-peak demand for electricity: Is there a potential for load shifting?. Energy Economics, 102, 105466. https://doi.org/10.1016/j.eneco.2021.105466 [Google Scholar] [Crossref]

36. Schrammel, J., Diamond, L. M., Fröhlich, P., Mor, G., & Cipriano, J. (2023). Influencing residential electricity consumption with tailored messages: long-term usage patterns and effects on user experience. Energy, Sustainability and Society, 13(1), 15. https://link.springer.com/article/10.1186/s13705-023-00386-4?fromPaywallRec=false [Google Scholar] [Crossref]

37. Jorgensen, B. S., Fumei, S., & Byrne, G. (2021). Reducing peak energy demand among residents who are not billed for their electricity consumption: experimental evaluation of behaviour change interventions in a university setting. International Journal of Environmental Research and Public Health, 18(16), 8406. https://doi.org/10.3390/ijerph18168406 [Google Scholar] [Crossref]

38. Jiang, Y., Motose, R., & Ihara, T. (2023). Estimating the carbon footprint of household activities in Japan from the time-use perspective. Environmental Science and Pollution Research, 30(9), 22343-22374. http://dx.doi.org/10.1007/s11356-022-23387-w [Google Scholar] [Crossref]

39. Hardmeier, M., Berthold, A., & Siegrist, M. (2024). Factors influencing people’s willingness to shift their electricity consumption. Journal of Consumer Policy, 47(2), 199-221. https://link.springer.com/article/10.1007/s10603-024-09561-2 [Google Scholar] [Crossref]

40. Lavin, C., & Julienne, H. (2025). Household activities underlying residential electricity demand: who does what during the evening peak?. Energy Efficiency, 18(5), 43. https://doi.org/10.1007/s12053-025-10322-4 [Google Scholar] [Crossref]

41. Nikolay V. Lobus , Maria A. Knyazeva ,Anna F. Popova and Maxim S. Kulikovski, 2023. Footprint Reduction and Climate Change Mitigation: A Review of the Approaches, Technologies, and Implementation Challenges. https://www.mdpi.com/2311-5629/9/4/120Carbon [Google Scholar] [Crossref]

42. Moira L. Nicolson, Michael J. Fell, and Gesche M. Huebner, 2018. Consumer demand for time of use electricity tariffs: A systematized review of the empirical evidence. https://doi.org/10.1016/j.rser.2018.08.040 [Google Scholar] [Crossref]

43. Baron, J. (2023). Thinking and deciding. Cambridge University Press. https://doi.org/10.1017/9781009263672 [Google Scholar] [Crossref]

44. Olatunde, T. M., Okwandu, A. C., & Akande, D. O. (2024). Reviewing the impact of energy-efficient appliances on household consumption. International Journal of Science and Technology, 6(2), 1-11. https://doi.org/10.53771/ijstra.2024.6.2.0038 [Google Scholar] [Crossref]

45. Chang, S., & Nam, K. (2021). Smart home adoption: the impact of user characteristics and differences in perception of benefits. Buildings, 11(9), 393. https://doi.org/10.3390/buildings11090393 [Google Scholar] [Crossref]

46. El-Azab, R. (2021). Smart homes: potentials and challenges. Clean Energy, 5(2), 302-315. https://doi.org/10.1093/ce/zkab010 [Google Scholar] [Crossref]

47. Bastida-Molina, P., Rivera, Y., Berna-Escriche, C., Blanco, D., & Álvarez-Piñeiro, L. (2024). Challenges and opportunities in electric vehicle charging harnessing solar photovoltaic surpluses for demand-side management. Machines, 12(2), 144. https://doi.org/10.3390/machines12020144 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles