Augmented Education and Employability: Skills, Risks, and the Transformation of Human Roles

Authors

Karima Ghzaiel

PhD at the Faculty of Economics and Management of Sfax Marketing Research Laboratory (LRM) (Tunisia)

Mehdi Hajri

Faculty of Economics and Management of Mahdia Tunisia (Tunisia)

Article Information

DOI: 10.47772/IJRISS.2025.91100585

Subject Category: Marketing

Volume/Issue: 9/11 | Page No: 7540-7555

Publication Timeline

Submitted: 2025-12-08

Accepted: 2025-12-15

Published: 2025-12-25

Abstract

This research aims to present original perspectives on stakeholders' perceptions of AI integration in higher education and understand how this transition could contribute to enhancing graduates' skills and employability. It adopts an integrative qualitative approach based on semi-structured interviews and focus groups with various stakeholders (teachers, experts, decision-makers, professionals, students) to which we have added contextualized scenarios.
The results indicate that AI promotes personalisation, efficiency and information accessibility, but raises concerns related to the decontextualisation of content, the cognitive dependency, the loss of human interaction and the risks of algorithmic injustice and exclusion, particularly in assessment and recruitment. The findings indicate that AI is deeply transforming teaching practices, competence requirements, and institutional processes. The study calls for stronger regulation and a “human-in-the-loop” approach to ensuring ethical and inclusive integration.

Keywords

AI education, Employability, Higher education, Skills gap, Stakeholders

Downloads

References

1. Acemoglu, D., & Autor, D. (2011). Skills, tasks and technologies: Implications for employment and earnings. In Handbook of labor economics (Vol. 4, pp. 1043-1171). Elsevier. [Google Scholar] [Crossref]

2. Aghion, P., Antonin, C., & Bunel, S. (2019). Intelligence artificielle, croissance et emploi : le rôle des politiques. Economie et Statistique/Economics and Statistics, (510-511-512), 153-169. [Google Scholar] [Crossref]

3. Alyoussef, I. Y., Drwish, A. M., Albakheet, F. A., & Alhajhoj, R. H. (2025). AI Adoption for Collaboration: Factors Influencing Inclusive Learning Adoption in Higher Education. IEEE Access. [Google Scholar] [Crossref]

4. Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. Journal of Economic perspectives, 29(3), 3-30. [Google Scholar] [Crossref]

5. Bawden, D. (2008). Origins and concepts of digital literacy. Digital literacies: Concepts, policies and practices, 30(2008), 17-32. [Google Scholar] [Crossref]

6. Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 annual meeting of the American educational research association, Vancouver, Canada (Vol. 1, p. 25). [Google Scholar] [Crossref]

7. Brunello, G. and Wruuck, P. (2021), “Skill shortages and skill mismatch: a review of the literature”, Journal of Economic Surveys, Vol. 35 No. 4, pp. 1145-1167 [Google Scholar] [Crossref]

8. Brynjolfsson, E., Li, D., & Raymond, L. (2025). Generative AI at work. The Quarterly Journal of Economics, 140(2), 889-942. [Google Scholar] [Crossref]

9. Bukartaite, R., & Hooper, D. (2023). Automation, artificial intelligence and future skills needs: an Irish perspective. European Journal of Training and Development, 47(10), 163-185. [Google Scholar] [Crossref]

10. Cetindamar, D., Kitto, K., Wu, M., Zhang, Y., Abedin, B., & Knight, S. (2022). Explicating AI literacy of employees at digital workplaces. IEEE transactions on engineering management, 71, 810-823. [Google Scholar] [Crossref]

11. Creswell, J. W., & Poth, C. N. (2018). A Book Review: Qualitative Inquiry & Research Design: Choosing Among Five Approaches. In SAGE Publications, Inc.: Vol. Fourth Edi. [Google Scholar] [Crossref]

12. Dai, W., Lin, J., Jin, H., Li, T., Tsai, Y. S., Gašević, D., & Chen, G. (2023, July). Can large language models provide feedback to students? A case study on ChatGPT. In 2023 IEEE international conference on advanced learning technologies (ICALT) (pp. 323-325). IEEE. [Google Scholar] [Crossref]

13. Edquist, C. (2011). Design of innovation policy through diagnostic analysis: identification of systemic problems (or failures), Industrial and Corporate Change, November 11, 2011, pp. 1–29, doi:10.1093/icc/dtr060 [Google Scholar] [Crossref]

14. Emery F.E., Trist E.L. (1960), Socio-technical Systems, in C. W. Churchman et M. Verhulst (dir.), Management Science, Models and Techniques, Pergamon, p. 83-97. [Google Scholar] [Crossref]

15. Gligorea, I., Cioca, M., Oancea, R., Gorski, A. T., Gorski, H., & Tudorache, P. (2023). Adaptive learning using artificial intelligence in e-learning: A literature review. Education Sciences, 13(12), 1216. [Google Scholar] [Crossref]

16. Haleem, A., Javaid, M., Qadri, M.A., Singh, R.P, Suman, R. (2022). Artificial intelligence (AI) applications for marketing: a literature-based study, Int. J. Intell. Netw. 3, 119–132 [Google Scholar] [Crossref]

17. Hargittai, E. (2001). Second-level digital divide: Mapping differences in people's online skills. arXiv preprint cs/0109068. [Google Scholar] [Crossref]

18. Holmes, W., & Tuomi, I. (2022). State of the art and practice in AI in education. European journal of education, 57(4), 542-570. [Google Scholar] [Crossref]

19. Huang, M. H., & Rust, R. T. (2018). Artificial intelligence in service. Journal of Service Research, 21(2), 155-172. [Google Scholar] [Crossref]

20. Hughes, R., & Huby, M. (2004). The construction and interpretation of vignettes in social research. Social work and social sciences review, 11(1), 36-51. [Google Scholar] [Crossref]

21. Ifenthaler, D., & Yau, J. Y. K. (2020). Utilising learning analytics to support study success in higher education: a systematic review. Educational Technology Research and Development, 68(4), 1961-1990. [Google Scholar] [Crossref]

22. Ivanov, S., Soliman, M., Tuomi, A., Alkathiri, N. A., & Al-Alawi, A. N. (2024). Drivers of generative AI adoption in higher education through the lens of the Theory of Planned Behaviour. Technology in Society, 77, 102521. [Google Scholar] [Crossref]

23. Jaiswal, A., Arun, C.J. and Varma, A. (2021), “Rebooting employees: upskilling for artificial intelligence in multinational corporations”, The International Journal of Human Resource Management, Vol. 33 No. 6, pp. 1179-1208. [Google Scholar] [Crossref]

24. Jaiswal, K., Kuzminykh, I., & Modgil, S. (2025). Understanding the skills gap between higher education and industry in the UK in artificial intelligence sector. Industry and Higher Education, 39(2), 234-246. [Google Scholar] [Crossref]

25. Jin, Y., Yan, L., Echeverria, V., Gašević, D., & Martinez-Maldonado, R. (2025). Generative AI in higher education: A global perspective of institutional adoption policies and guidelines. Computers and Education: Artificial Intelligence, 8, 100348. [Google Scholar] [Crossref]

26. Jonassen, D. H. (1999). Designing constructivist learning environments. Educational Technology, 39(5), 34–37. [Google Scholar] [Crossref]

27. Kaddachi, B. (2017). Les TIC en enseignement supérieur tunisien : une intégration encore à sespremiers balbutiements, International Journal of Technologies in Higher Education, 14(1). [Google Scholar] [Crossref]

28. Kaliannan, M., Darmalinggam, D., Dorasamy, M. and Abraham, M. (2023). Inclusive talent 29. development as a key talent management approach: a systematic literature review. Human [Google Scholar] [Crossref]

29. Resource Management Review, Vol. 33 No. 1, pp. 1-23. [Google Scholar] [Crossref]

30. Kandlhofer, M., Steinbauer, G., Hirschmugl-Gaisch, S., & Huber, P. (2016, October). Artificial intelligence and computer science in education: From kindergarten to university. In 2016 IEEE frontiers in education conference (FIE) (pp. 1-9). IEEE. [Google Scholar] [Crossref]

31. Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and individual differences, 103, 102274. [Google Scholar] [Crossref]

32. Kim, J., Park, S., Moukhliss, S., Song, K., Koo, D. (2025). Perceptions of Artificial intelligence (AI) in the construction industry among undergraduate construction management students: case study of future leaders, Buildings 15, 1095 [Google Scholar] [Crossref]

33. Kinash, S. and Crane, L.H. (2015), “Enhancing graduate employability of the 21st century learner”, in Churchill, D., Chiu, T. K.F. and Gu, N.J. (Eds), Proceedings of the International Mobile Learning Festival 2015: Mobile Learning, MOOCs and 21st Century Learning, Consultants International for Human Capital Development (CIHCD), Hong Kong, pp. 148-171. [Google Scholar] [Crossref]

34. Kohnke, L., Moorhouse, B. L., & Zou, D. (2023). ChatGPT for language teaching and learning. Relc Journal, 54(2), 537-550. [Google Scholar] [Crossref]

35. Kong, S. C., Abelson, H., & Kwok, W. Y. (2022). Introduction to computational thinking education in K–12. Computational thinking education in k–12. Artificial intelligence literacy and physical computing, 1-12. [Google Scholar] [Crossref]

36. Kotler, P., & Fox, K. F. (1995). Strategic marketing for educational institutions. Prentice Hall. [Google Scholar] [Crossref]

37. Krzywdzinski, M. (2017), “Automation, skill requirements and labour-use strategies: high-wage and lowwage approaches to high-tech manufacturing in the automotive industry”, New Technology, Work and Employment, Vol. 32 No. 3, pp. 247-267. [Google Scholar] [Crossref]

38. Lane, M., & Saint-Martin, A. (2021). The impact of Artificial Intelligence on the labour market: What do we know so far? OECD Social, Employment, and Migration Working Papers, (256), 0_1-60. [Google Scholar] [Crossref]

39. Lave, J. & E. Wenger. (1991). Situated Learning: Legitimate Peripheral Participation. Cambridge, England: Cambridge University Press. Doi: 10.1017/ CBO9780511815355. [Google Scholar] [Crossref]

40. Li, Y., Sha, L., Yan, L., Lin, J., Raković, M., Galbraith, K., & Chen, G. (2023). Can large language models write reflectively? Computers and Education: Artificial Intelligence, 4, 100140. [Google Scholar] [Crossref]

41. Luckin, R., Cukurova, M., Kent, C., & Du Boulay, B. (2022). Empowering educators to be AI-ready. Computers and Education: Artificial Intelligence, 3, 100076. [Google Scholar] [Crossref]

42. Makarius, E.E. and Srinivasan, M. (2017), “Addressing skills mismatch: utilising talent supply chain management to enhance collaboration between companies and talent suppliers”, Business Horizons, Vol. 60 No. 4, pp. 495-505 [Google Scholar] [Crossref]

43. Mazzoli, C. A., Semeraro, F., & Gamberini, L. (2023). Enhancing cardiac arrest education: exploring the potential use of MidJourney. Resuscitation, 189. [Google Scholar] [Crossref]

44. Mishra, A. (2024). A comprehensive review of Artificial intelligence and Machine Learning: concepts, trends, and applications, Int. J. Sci. Res. Sci. Technol. 11 (5), 126–142, https://doi.org/10.32628/IJSRST2411587. [Google Scholar] [Crossref]

45. Moorhouse, B. L., Yeo, M. A., & Wan, Y. (2023). Generative AI tools and assessment: Guidelines of the world's top-ranking universities. Computers and Education Open, 5, 100151. [Google Scholar] [Crossref]

46. Morandini, S., Fraboni, F., De Angelis, M., Puzzo, G., Giusino, D. and Pietrantoni, L. (2023), “The impact of artificial intelligence on workers’ skills: upskilling and reskilling in organisations”, Informing Science, Vol. 26, p. 39. [Google Scholar] [Crossref]

47. McDonald, N., Johri, A., Ali, A., & Collier, A. H. (2025). Generative artificial intelligence in higher education: Evidence from an analysis of institutional policies and guidelines. Computers in Human Behavior: Artificial Humans, 3, 100121. [Google Scholar] [Crossref]

48. Milani, R., Setti, I., & Argentero, P. (2021). Learning agility and talent management: A systematic review and future prospects. Consulting Psychology Journal: Practice and Research, 73(4), 349. [Google Scholar] [Crossref]

49. Nagy, A. S., Tumiwa, J. R., Arie, F. V., & Erdey, L. (2024). An exploratory study of artificial intelligence adoption in higher education. Cogent Education, 11(1), 2386892. [Google Scholar] [Crossref]

50. Ng, D. T. K., Luo, W., Chan, H. M. Y., & Chu, S. K. W. (2022). Using digital story writing as a pedagogy to develop AI literacy among primary students. Computers and Education: Artificial Intelligence, 3, 100054. [Google Scholar] [Crossref]

51. Ngando Black, C., & ZOUGGAR, M. (2025). L’intelligence Artificielle bouscule les compétences. Management & Datascience, 9(4). [Google Scholar] [Crossref]

52. Ng, D. T. K., & Chu, S. K. W. (2021). Motivating Students to Learn AI Through Social Networking Sites: A Case Study in Hong Kong. Online Learning, 25(1), 195-208. [Google Scholar] [Crossref]

53. Ng, D. T. K., Wu, W., Leung, J. K. L., Chiu, T. K. F., & Chu, S. K. W. (2024). Design and validation of the AI literacy questionnaire: The affective, behavioural, cognitive and ethical approach. British Journal of Educational Technology, 55(3), 1082-1104. [Google Scholar] [Crossref]

54. Ngoveni, M. (2025). Bridging the AI knowledge gap: The urgent need for AI literacy and institutional support. International Journal of Technologies in Learning, 32(2), 83-100. [Google Scholar] [Crossref]

55. O’Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy Hardcover, September 6, 2016 [Google Scholar] [Crossref]

56. Pillai, R.; Sivathanu, B.; Metri,B. and Kaushik, N (2024). Students’ adoption of AI-based teacher-bots (Tbots) for learning in higher education. Inf. Technol. People, vol. 37, no. 1, pp. 328–355. [Google Scholar] [Crossref]

57. Porter, M.E. and Kramer, M.R. (2011). The big idea: creating shared value. How to reinvent capitalism and unleash a wave of innovation and growth. Harvard Business Review, Vol. 89 Nos 1/2, pp. 62-77. [Google Scholar] [Crossref]

58. Prahalad, C.K. and Hamel, G. (1990). The Core Competence of the Corporation. Harvard Business Review, 79-91. Rachmad, Y. E. (2022). Adaptive Learning Theory. [Google Scholar] [Crossref]

59. Rotatori, D., Lee, E.J. and Sleeva, S. (2021). The evolution of the workplace during the Fourth Industrial Revolution. Human Resource Development International, Vol. 24 No. 1, pp. 92-103. [Google Scholar] [Crossref]

60. Rafsanjani, H. N., & Nabizadeh, A. H. (2023). Towards human-centered artificial intelligence (AI) in architecture, engineering, and construction (AEC) industry. Computers in Human Behavior Reports, 11, 100319. [Google Scholar] [Crossref]

61. RANES, B. (2025). AI integration in facilitating learning: Its benefits, challenges and strategies for enhancement. Divine Word, International Journal of Management and Humanities (DWIJMH), 4(3), 2095-2109. [Google Scholar] [Crossref]

62. Salas-Pilco, S. Z., & Yang, Y. (2022). Artificial intelligence applications in Latin American higher education: a systematic review. International Journal of Educational Technology in Higher Education, 19(1), 21. [Google Scholar] [Crossref]

63. Sarin, C. (2019). Analyzing skill gap between higher education and employability. Research Journal of Humanities and Social Sciences, 10(3), 941-948. [Google Scholar] [Crossref]

64. Sattinger, M. (1993). Assignment models of the distribution of earnings. Journal of economic literature, 31(2), 831-880. [Google Scholar] [Crossref]

65. Shipley, C. and McGowan, H. (2020). The Adaptation Advantage: Let Go, Learn Fast, and Thrive in the Future of Work, John Wiley and Sons, New York, NY. [Google Scholar] [Crossref]

66. Shiri, M., & Baigutov, K. (2024). The role of teacher training in facilitating the adoption of digital technologies in art education. National Center for Higher Education Development, 3(47). [Google Scholar] [Crossref]

67. Sweller, J. (2010). Cognitive load theory: Recent theoretical advances. [Google Scholar] [Crossref]

68. Tolan, S., Pesole, A., Martínez-Plumed, F., Fernández-Macías, E., Hernández-Orallo, J., & Gómez, E. (2021). Measuring the occupational impact of AI: tasks, cognitive abilities and AI benchmarks. Journal of Artificial Intelligence Research, 71, 191-236. [Google Scholar] [Crossref]

69. Tyler, T. R. (2000). Social Justice: Outcome and Procedure, 35, Int’l J. Psychol, 117, 119-20. [Google Scholar] [Crossref]

70. Vartiainen, H., Liukkonen, P., & Tedre, M. (2025). Emerging human-technology relationships in a codesign process with generative AI. Thinking Skills and Creativity, 56, 101742. [Google Scholar] [Crossref]

71. Vettori, O., & Warm, J. (2025). The race for AI skills as an obstacle course: Institutional challenges and low threshold suggestions. Project Leadership and Society, 100183. [Google Scholar] [Crossref]

72. Wang, H., Dang, A., Wu, Z., & Mac, S. (2024). Generative AI in higher education: Seeing ChatGPT through universities' policies, resources, and guidelines. Computers and Education: Artificial Intelligence, 7, 100326. [Google Scholar] [Crossref]

73. Wieczorek, M. (2025). Using ethical scenarios to explore the future of artificial intelligence in primary and secondary education. Learning, Media and Technology, 1-17. [Google Scholar] [Crossref]

74. Williamson, B. (2020). New digital laboratories of experimental knowledge production: Artificial intelligence and education research. London Review of Education, 18(2), 209-220. [Google Scholar] [Crossref]

75. Williamson, B., & Eynon, R. (2020). Historical threads, missing links, and future directions in AI in education. Learning, Media and Technology, 45(3), 223-235. [Google Scholar] [Crossref]

76. Williamson, B., Gulson, K. N., Perrotta, C., & Witzenberger, K. (2022). Amazon and the new global connective architectures of education governance. Harvard Educational Review, 92(2), 231-256. [Google Scholar] [Crossref]

77. Wilson, R. (2013), “Skills anticipation – the future of work and education”, International Journal of Educational Research, Vol. 61 No. 1, pp. 101-110. [Google Scholar] [Crossref]

78. Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. [Google Scholar] [Crossref]

79. Wirtz,J.; V. Pitardi,V (2023). How intelligent automation, service robots, and AI will reshape service products and their delivery, Ital. J. Market. 2023, 289–300, https:// doi.org/10.1007/s43039-023-00076-1. [Google Scholar] [Crossref]

80. Yan, L., Greiff, S., Teuber, Z., & Gašević, D. (2024). Promises and challenges of generative artificial intelligence for human learning. Nature Human Behaviour, 8(10), 1839-1850. [Google Scholar] [Crossref]

81. Ybema, J. F., van Vuuren, T., & van Dam, K. (2020). HR practices for enhancing sustainable employability: implementation, use, and outcomes. The International Journal of Human Resource Management, 31(7), 886-907. [Google Scholar] [Crossref]

82. Zahidi, S., Ratcheva, V., Hingel, G. and Brown, S. (2020), The Future of Jobs Report 2020, The World Economic Forum, Geneva. [Google Scholar] [Crossref]

83. Zanzotto, F. M. (2019). Human-in-the-loop artificial intelligence. Journal of Artificial Intelligence Research, 64, 243-252. [Google Scholar] [Crossref]

84. Zavera, I. (2019), “The analysis of the response from tertiary education programs to the challenges of the Fourth Industrial Revolution”, paper presented at the 13th International Conference on Business Excellence, Bucharest, 22-23. [Google Scholar] [Crossref]

85. Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators? International journal of educational technology in higher education, 16(1), 1-27. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles