Electrical Safety Standards Awareness and Compliance: A Pathway to Achieving SDG 7, SDG 11, and SDG 9

Authors

James Clarence P. Yapo

College of Teacher Education, Mariano Marcos State University (Philippines)

Regie Boy B. Fabro

College of Teacher Education, Mariano Marcos State University (Philippines)

Ronald C. Esmeralda Jr

College of Teacher Education, Mariano Marcos State University (Philippines)

Peter John B. Ladran

College of Teacher Education, Mariano Marcos State University (Philippines)

Dariel Justin V. Daquioag

College of Teacher Education, Mariano Marcos State University (Philippines)

Enrik Kristoffer L. Paulino

College of Teacher Education, Mariano Marcos State University (Philippines)

Article Information

DOI: 10.47772/IJRISS.2025.91100641

Subject Category: Public Health

Volume/Issue: 9/11 | Page No: 8205-8223

Publication Timeline

Submitted: 2025-12-08

Accepted: 2025-12-17

Published: 2025-12-29

Abstract

This study aims to evaluate the level of awareness and compliance of residents in Laoag City, Ilocos Norte, Philippines with electrical installation safety standards, identify factors affecting compliance, and propose strategies to improve awareness and adherence. Using a convergent parallel mixed-methods design, quantitative data are collected through survey questionnaires and compliance checklists, while qualitative insights are gathered through semi-structured interviews with key informants, including electricians, local government officials, and safety inspectors. Stratified random sampling is employed for the quantitative component, while purposive sampling is used for the qualitative component to ensure diverse and representative perspectives.

Keywords

Electrical safety standards, Awareness and compliance, Sustainable development goals

Downloads

References

1. Adelani, N. F. A., & Olatunde, N. T. M. (2024). A review of theoretical frameworks for electrical safety practices in water treatment facilities: Lessons learned from Africa and the United States. Open Access Research Journal of Engineering and Technology, 6(2), 33–39. https://doi.org/10.53022/oarjet.2024.6.2.0015 [Google Scholar] [Crossref]

2. Alfalah, G., Al-Shalwi, M., Elshaboury, N., Al-Sakkaf, A., Alshamrani, O., & Qassim, A. (2023). Development of fire safety assessment model for buildings using analytic hierarchy process. Applied Sciences, 13(13), 7740. https://doi.org/10.3390/app13137740 [Google Scholar] [Crossref]

3. Baflor, R. D., Gabuya, A. Q., Jr., & Pajaron, G. P., Jr. (2025). Reengineering the electrical wiring system of Cebu Technological University, Tuburan Campus. Journal of Electrical and Electronic Systems Research, 24(1). https://doi.org/10.24191/jeesr.v24i1.009 [Google Scholar] [Crossref]

4. Beldia, S. G. (2025). Quality evaluation of PEC 2017-compliant electrical wiring software: ISO/IEC 25010-based approach. IJIREEICE, 13(6). https://doi.org/10.17148/ijireeice.2025.13606 [Google Scholar] [Crossref]

5. Calipayan, J. P., Jr., & Espinola, A. C. (2025). Compliance of building wiring installations in public infrastructure buildings: Implications for electrical safety and energization in Surigao del Sur, Philippines. Jurnal Kejuruteraan, 37(5), 2111–2123. https://doi.org/10.17576/jkukm-2025-37(5)-07 [Google Scholar] [Crossref]

6. Chu, R., Schweitzer, P., & Zhang, R. (2020). Series AC arc fault detection method based on high-frequency coupling sensor and convolution neural network. Sensors, 20(17), 4910. https://doi.org/10.3390/s20174910 [Google Scholar] [Crossref]

7. Cvetković, V. M., Dragašević, A., Protić, D., Janković, B., Nikolić, N., & Milošević, P. (2022). Fire safety behavior model for residential buildings: Implications for disaster risk reduction. International Journal of Disaster Risk Reduction, 76, 102981. https://doi.org/10.1016/j.ijdrr.2022.102981 [Google Scholar] [Crossref]

8. Czapp, S., Tariq, H., & Cieślik, S. (2022). Behavior of residual current devices at earth fault currents with DC component. Sensors, 22(21), 8382. https://doi.org/10.3390/s22218382 [Google Scholar] [Crossref]

9. da Rocha, G. S., Rodrigues, J. P. C., & Gazzana, D. S. (2023). Electrical fire risk indexing using fuzzy Petri nets. Fire Safety Journal, 139, 103817. https://doi.org/10.1016/j.firesaf.2023.103817 [Google Scholar] [Crossref]

10. Darcy, & Roy Press Meng, H., Xiao, L., Zhang, C., Zhang, T., Xia, D., & Dong, W. (2024). A systematic review and bibliometric analysis of electrical fires from 1993 to 2022. Fire Technology, 60(5), 3347–3377. https://doi.org/10.1007/s10694-024-01580-2 [Google Scholar] [Crossref]

11. Fabiosa, F. X. (2025). A study on causes of electrical fire safety knowledge, awareness and practices among families in Yangon Region. Scribd. https://www.scribd.com/document/818120753/A-STUDY-ON-CAUSES-OF-ELECTRICAL-FIRE-SAFETY-KNOWLEDGE-AWARENESS-AND-PRACTICES-AMONG-FAMILIES-IN-YANGON-REGION [Google Scholar] [Crossref]

12. Guillermo, E. J. (2024). BFP-Ilocos Norte logs low fire incidents in Q3. Philippine Information Agency. https://pia.gov.ph/news/bfp-ilocos-norte-logs-low-fire-incidents-in-q3/ [Google Scholar] [Crossref]

13. Jamieson, I. A. (2023). Grounding (earthing) as related to electromagnetic hygiene: An integrative review. Biomedical Journal, 46(1), 30–40. https://doi.org/10.1016/j.bj.2022.11.005 [Google Scholar] [Crossref]

14. Jadwiga, F., Katarzyna, K.-Ch., & Bartłomiej, K. P. (2020). Fire behavior of electrical installations in buildings. Energies, 13, 6433. https://doi.org/10.3390/en13236433 [Google Scholar] [Crossref]

15. Jeong, M.-C., & Kim, J. (2019). Prediction and analysis of electrical accidents and risk due to climate change. International Journal of Environmental Research and Public Health, 16(16), 2984. https://doi.org/10.3390/ijerph16162984 [Google Scholar] [Crossref]

16. Kurata, Y. B., Ong, A. K. S., Prasetyo, Y. T., Dizon, R. M., Persada, S. F., & Nadlifatin, R. (2023). Determining factors affecting perceived effectiveness among Filipinos for fire-prevention preparedness in the National Capital Region, Philippines: Integrating Protection Motivation Theory and extended Theory of Planned Behavior. International Journal of Disaster Risk Reduction, 85, 103497. https://doi.org/10.1016/j.ijdrr.2022.103497 [Google Scholar] [Crossref]

17. Kulor, F., Apprey, M. W., Agbevanu, K. T., Gasper, G. K., & Akorta, J. A. (2024). Invisible threats: An investigation of electrical hazards and safety practices among residential electricity consumers. Heliyon, 10(14), e34470. https://doi.org/10.1016/j.heliyon.2024.e34470 [Google Scholar] [Crossref]

18. Kulor, F., Apprey, M. W., Selase, G. S., & Novieto, D. T. (2024). Appraisal of household safety practices of extension-cord usage in Ho Municipality, Ghana. Cogent Engineering, 11(1), 2347758. https://doi.org/10.1080/23311916.2024.2347758 [Google Scholar] [Crossref]

19. Laoag City, Ilocos Norte Profile – PhilAtlas. (2020). PhilAtlas. https://www.philatlas.com/luzon/r01/ilocos-norte/laoag.html [Google Scholar] [Crossref]

20. Li, G., Guo, J., Kang, Y., Huang, Q., Zhao, J., & Liu, C. (2025). Classification and prevention of electrical fires: A comprehensive review. Fire, 8(4), 154. https://doi.org/10.3390/fire8040154 [Google Scholar] [Crossref]

21. Mante, B., Sekyere, F., Asabere, P., Prempeh, I., & Ofosu, W. (2024). Electrical installation safety assessment of buildings in Kumasi, Ghana. Journal of Power and Energy Engineering, 12, 84–101. https://doi.org/10.4236/jpee.2024.129006 [Google Scholar] [Crossref]

22. Meacham, B. J. (2023). Fire safety of existing residential buildings: Building regulatory system gaps and needs. Fire Safety Journal, 140, 103902. https://doi.org/10.1016/j.firesaf.2023.103902 [Google Scholar] [Crossref]

23. Pedersen, K., Nguyen, K., & Hunt, A. (2025). A risk-based approach to assess the effectiveness of sprinklers in buildings with combustible cladding. Fire, 8(4), 119. https://doi.org/10.3390/fire8040119 [Google Scholar] [Crossref]

24. Rita, J. (2025, February 28). Electrical issues remain most common cause of fire — BFP data. GMA News Online. https://www.gmanetwork.com/news/topstories/nation/937689/electrical-issues-remain-most-common-cause-of-fire-bfp-data/story/ [Google Scholar] [Crossref]

25. Sebastian, C. J. A., Fabro, R. B. B., Faylogna, P. N., Ladran, P. J. B., Daquioag, D. J. V., & Castillo, D. O. (2025). Electrical safety practices and challenges in disaster‑prone coastal communities: A case study of Barangay Balaoi, Pagudpud, Ilocos Norte, Philippines. International Journal of Research and Innovation in Social Science, 9(16). https://doi.org/10.47772/IJRISS.2024.916SCO0027 [Google Scholar] [Crossref]

26. Taylor, M. J., Fielding, J., & O'Boyle, J. (2024). Electrical home fire injuries analysis. Fire, 7(12), 471. https://doi.org/10.3390/fire7120471 [Google Scholar] [Crossref]

27. Vu, M., & Lin, S.-Y. (2024). Empirical assessment of fire safety in high-rise residential buildings in Vietnam and residents’ knowledge and awareness regarding fire safety. Fire Safety Journal, 146, 104162. https://doi.org/10.1016/j.firesaf.2024.104162 [Google Scholar] [Crossref]

28. Wang, J., Yuan, D., Liu, D., Zhou, T., & Liu, W. (2025). Fire safety literacy of personnel in high‑rise buildings: A survey study. Fire, 8(2), 40. https://doi.org/10.3390/fire8020040 [Google Scholar] [Crossref]

29. Wang, Y., Ni, X., Wang, J., Hu, Z., & Lu, K. (2020). A comprehensive investigation on the fire hazards and environmental risks in a commercial complex based on Fault Tree Analysis and the Analytic Hierarchy Process. International Journal of Environmental Research and Public Health, 17(19), 7347. https://doi.org/10.3390/ijerph17197347 [Google Scholar] [Crossref]

30. Su, L., Wei, C., Yang, F., Zhang, L., Shen, Y., Zhang, F., & Yang, Z. (2023). Electrical fire dynamic risk assessment for high‑rise buildings based on variable fuzzy set theory and Bayesian network. Mathematical Problems in Engineering, 2023, Article 9068958. https://doi.org/10.1155/2023/9068958 [Google Scholar] [Crossref]

31. Yang, F., Cai, Z., Su, L., Xue, Y., Chen, X., Shen, Y., & Wang, J. (2022). Research on online monitoring and cause identification system of building electrical fire. International Journal of Metrology and Quality Engineering, 13(7), Article 7. https://doi.org/10.1051/ijmqe/2022009 [Google Scholar] [Crossref]

32. Yu, F., Wang, S., Tang, K., Lin, Y., Wang, S., & Zhang, Y. (2024). Research progress on the fire characteristics of electric cables and wires. Fire, 7(6), 186. https://doi.org/10.3390/fire7060186 [Google Scholar] [Crossref]

33. Zhang, J., Huang, L., Chen, T., & Su, G. (2021). Simulation-based analysis of electrical fire risks caused by poor electric contact between plug and receptacle. Fire Safety Journal, 126, 103434. https://doi.org/10.1016/j.firesaf.2021.103434 [Google Scholar] [Crossref]

34. Shi, B., Yang, C., & Long, H. (2023). Research on the fire hazard of different cables based on cone calorimetry. Fire, 6(11), 431. https://doi.org/10.3390/fire6110431 [Google Scholar] [Crossref]

35. Zou, H., Zou, Y., & Xiong, C. (2024). Research on fire risk assessment and prevention and control measures for high-rise buildings. Academic Journal of Science and Technology, 8(1). https://doi.org/10.54097/ajst.v8i1.14329 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles