From Bitcoin to Altcoins: A Critical Review of Deep Learning Models in Cryptocurrency Price Prediction
Authors
Faculty of Computer and Mathematical Sciences Universiti Teknologi MARA Cawangan Kedah, 08400 Merbok, Kedah (Malaysia)
School of Mathematical Sciences, Universiti Sains Malaysia,11800 Pulau Pinang (Malaysia)
Faculty of Computer and Mathematical Sciences Universiti Teknologi MARA Cawangan Kedah, 08400 Merbok, Kedah (Malaysia)
Faculty of Computer and Mathematical Sciences Universiti Teknologi MARA Cawangan Kedah, 08400 Merbok, Kedah (Malaysia)
Faculty of Computer and Mathematical Sciences Universiti Teknologi MARA Cawangan Kedah, 08400 Merbok, Kedah (Malaysia)
Faculty of Computer and Mathematical Sciences Universiti Teknologi MARA Cawangan Kedah, 08400 Merbok, Kedah (Malaysia)
Faculty of Computer and Mathematical Sciences Universiti Teknologi MARA Cawangan Selangor, 40450 Shah Alam, Selangor Darul Ehsan (Malaysia)
Article Information
DOI: 10.47772/IJRISS.2026.10100218
Subject Category: Economics
Volume/Issue: 10/1 | Page No: 2806-2822
Publication Timeline
Submitted: 2026-01-11
Accepted: 2026-01-17
Published: 2026-01-31
Abstract
Cryptocurrencies such as Bitcoin and Ethereum have transformed global finance but remain difficult to forecast due to volatility, nonlinear dynamics, and sensitivity to speculative and macroeconomic shocks. Traditional econometric models provide baselines but fail to capture chaotic and high-frequency patterns. Deep learning architectures including LSTM, GRU, and Bi-LSTM offer stronger predictive capacity, yet issues of interpretability, scalability, and data heterogeneity persist.
This study presents a scientometric and thematic review of deep learning in cryptocurrency forecasting using Scopus AI Analytics, covering publications from 2010 to 2025. The analysis maps research trends, conceptual clusters, leading experts, and emerging themes. Findings indicate a methodological progression from single model Bitcoin focused studies toward hybrid and ensemble frameworks that integrate technical indicators, sentiment analysis, and blockchain-based features. Evaluation metrics have also shifted beyond error minimization toward profitability and risk-adjusted performance.
The review highlights three critical frontiers: (i) hybrid and ensemble architectures for robustness, (ii) explainable AI for interpretability, and (iii) integration of multi-source and behavioral data for practical forecasting. Collectively, these insights underscore the need for resilient, interpretable, and multi-asset deep learning systems, offering implications for both academic research and financial decision-making in volatile digital asset markets.
Keywords
Cryptocurrency price prediction, Bitcoin and altcoins, Scientometric analysis, Explainable artificial intelligence, Hybrid and ensemble forecasting
Downloads
References
1. Alnami, H., Mohzary, M., Assiri, B., & Zangoti, H. (2025). An integrated framework for cryptocurrency price forecasting and anomaly detection using machine learning. Applied Sciences, 15(2), 242–257. https://doi.org/10.3390/app15020242 [Google Scholar] [Crossref]
2. Aydoğan, B., Cayirli, O., & Vardar, G. (2024). Impact of macroeconomic factors on cryptocurrency pricing: Evidence from Bitcoin and Ethereum markets. Computational Economics. https://doi.org/10.1007/s10614-024-10495-4 [Google Scholar] [Crossref]
3. Bouteska, A., Abedin, M. Z., Hajek, P., & Yuan, K. (2024). Cryptocurrency price forecasting – A comparative analysis of ensemble learning and deep learning methods. International Review of Financial Analysis, 94, 103257. https://doi.org/10.1016/j.irfa.2023.103257 [Google Scholar] [Crossref]
4. Cheng, C.-H., Yang, J.-H., & Dai, J.-P. (2025). Verifying technical indicator effectiveness in cryptocurrency price forecasting: A deep-learning time series model based on sparrow search algorithm. Cognitive Computation, 17(3), 455–469. https://doi.org/10.1007/s12559-024-10462-1 [Google Scholar] [Crossref]
5. Conlon, T., & McGee, R. (2020). Safe haven or risky hazard? Bitcoin during the COVID-19 bear market. Finance Research Letters, 35, 101607. https://doi.org/10.1016/j.frl.2020.101607 [Google Scholar] [Crossref]
6. Corbet, S., Meegan, A., Larkin, C., Lucey, B., & Yarovaya, L. (2018). Exploring the dynamic relationships between cryptocurrencies and other financial assets. Economics Letters, 165, 28–34. https://doi.org/10.1016/j.econlet.2018.01.004 [Google Scholar] [Crossref]
7. Dudek, G., Fiszeder, P., Kobus, P., & Orzeszko, W. (2024). Forecasting cryptocurrencies volatility using statistical and machine learning methods: A comparative study. Applied Soft Computing, 150, 111004. https://doi.org/10.1016/j.asoc.2023.111004 [Google Scholar] [Crossref]
8. Dutta, A., Bouri, E., & Roubaud, D. (2020). Forecasting cryptocurrency returns: The role of media attention. Applied Economics Letters, 27(7), 554–560. https://doi.org/10.1080/13504851.2019.1631871 [Google Scholar] [Crossref]
9. Dutta, A., Kumar, S., & Basu, M. (2020). A gated recurrent unit approach to Bitcoin price prediction. Journal of Risk and Financial Management, 13(2), 23–36. https://doi.org/10.3390/jrfm13020023 [Google Scholar] [Crossref]
10. El-Berawi, A. S., Belal, M. A. F., & Ellatif, M. M. A. (2021). Adaptive deep learning based cryptocurrency price fluctuation classification. International Journal of Advanced Computer Science and Applications, 12(9), 511–519. https://doi.org/10.14569/IJACSA.2021.0120960 [Google Scholar] [Crossref]
11. Elsevier. (2023). Scopus content coverage guide. Elsevier. https://www.elsevier.com/solutions/scopus [Google Scholar] [Crossref]
12. Fadhil, H. M., & Makhool, N. Q. (2024). Forecasting cryptocurrency market trends with machine learning and deep learning. BIO Web of Conferences, 67, 03023. [Google Scholar] [Crossref]
13. https://doi.org/10.1051/bioconf/20246703023 [Google Scholar] [Crossref]
14. Gadge, K., Daduria, S., Sarodaya, A., & Agrawal, P. K. (2025). Crypto forecast: Integrating web scraping and data analysis for cryptocurrency price prediction. International Journal on Informatics Visualization, 9(1), 45–56. https://doi.org/10.11591/ijiv.v9i1.15894 [Google Scholar] [Crossref]
15. Gupta, A., & Nain, H. (2021). Bitcoin price prediction using time series analysis and machine learning techniques. In Lecture Notes in Networks and Systems (pp. 231–241). Springer. https://doi.org/10.1007/978-3-030-68154-8_23 [Google Scholar] [Crossref]
16. Handoko, B. L., Hamsal, M., Sundjaja, A. M., & Gunadi, W. (2024). Heuristic bias and herding behavior for predicting investor decision in cryptocurrency trading. International Journal of Safety and Security Engineering, 14(2), 169–178. https://doi.org/10.18280/ijsse.140207 [Google Scholar] [Crossref]
17. Ikeda, S., Ito, T., Hasebe, K., & Ito, T. (2025). A comparative study on long-term cryptocurrency price prediction using LSTM, GRU, and Bi-LSTM. Journal of Robotics, Networking and Artificial Life, 12(1), 37–43. https://doi.org/10.1109/JRNAL.2025.105007471262 [Google Scholar] [Crossref]
18. Jain, P., Kumar, A., Pathak, N. K., & Chaudhary, M. (2024). Cryptocurrency price prediction with deep neural networks: A comparative analysis of machine learning approaches. In Proceedings of the 11th [Google Scholar] [Crossref]
19. International Conference on Reliability, Infocom Technologies and Optimization (ICRITO 2024) (pp. 421– 428). IEEE. https://doi.org/10.1109/ICRITO2024.85193820402 [Google Scholar] [Crossref]
20. Kang, M., Hong, J., & Kim, S. (2025). Harnessing technical indicators with deep learning based price forecasting for cryptocurrency trading. Physica A: Statistical Mechanics and its Applications, 639, 129595. https://doi.org/10.1016/j.physa.2024.129595 [Google Scholar] [Crossref]
21. Kavithra, S., Girishankar, V. P., Iniyan, G., & Logesh, B. (2024). Cryptocurrency price prediction through integrated forecasting techniques. In Proceedings of the 3rd International Conference on Artificial [Google Scholar] [Crossref]
22. Intelligence for Internet of Things(AIIoT 2024) (pp. 143–152). [Google Scholar] [Crossref]
23. IEEE. https://doi.org/10.1109/AIIOT2024.85198544048 [Google Scholar] [Crossref]
24. Kirci, B. K., & Baydogmus, G. K. (2022). The effect of loss and optimization functions on Bitcoin rate prediction in LSTM. In HORA 2022 – 4th International Congress on Human-Computer Interaction, [Google Scholar] [Crossref]
25. Optimization and Robotic Applications (pp.1–6).IEEE. https://doi.org/10.1109/HORA.2022.85133961467 [Google Scholar] [Crossref]
26. Kuizinienė, D., Varoneckienė, A., & Krilavičius, T. (2019). Cryptocurrencies short-term forecast: Application of ARIMA, GARCH and SVR models. In CEUR Workshop Proceedings (Vol. 2458, pp. 95– 104). CEUR-WS. http://ceur-ws.org/Vol-2458/paper10.pdf [Google Scholar] [Crossref]
27. Lahmiri, S., & Bekiros, S. (2019). Cryptocurrency forecasting with deep learning chaotic neural networks. Chaos, Solitons & Fractals, 118, 35–40. https://doi.org/10.1016/j.chaos.2018.11.014 [Google Scholar] [Crossref]
28. Lan, T., & Frömmel, M. (2025). Risk factors in cryptocurrency pricing. International Review of Financial Analysis. https://doi.org/10.1016/j.irfa.2025.105007668459 [Google Scholar] [Crossref]
29. Manohar, S. (2024). Cryptocurrency as a slice in investment portfolio: Identifying critical antecedents and building taxonomy for emerging economy. Asia-Pacific Financial Markets. [Google Scholar] [Crossref]
30. https://doi.org/10.1007/s10690-024-09429-5 [Google Scholar] [Crossref]
31. Nouira, A. Y., Bouchakwa, M., & Amara, M. (2024). Role of social networks and machine learning techniques in cryptocurrency price prediction: A survey. Social Network Analysis and Mining, 14(1), 22–37. https://doi.org/10.1007/s13278-024-01162-2 [Google Scholar] [Crossref]
32. Omole, O., & Enke, D. (2023). A system dynamics modeling approach to explore Bitcoin market dynamics. In Proceedings of the American Society for Engineering Management International Annual Conference (pp. 1–10). ASEM. https://doi.org/10.54808/ASEM.2023.85188536571 [Google Scholar] [Crossref]
33. Park, J., & Seo, Y.-S. (2022). A deep learning-based action recommendation model for cryptocurrency profit maximization. Electronics, 11(14), 2157. https://doi.org/10.3390/electronics11142157 [Google Scholar] [Crossref]
34. Park, J., & Seo, Y.-S. (2023). Twitter sentiment analysis-based adjustment of cryptocurrency action recommendation model for profit maximization. IEEE Access, 11, 21344–21355. [Google Scholar] [Crossref]
35. https://doi.org/10.1109/ACCESS.2023.85159750792 [Google Scholar] [Crossref]
36. Pintelas, E., Livieris, I. E., Stavroyiannis, S., & Pintelas, P. (2020). Investigating the problem of cryptocurrency price prediction: A deep learning approach. In IFIP Advances in Information and Communication Technology (Vol. 593, pp. 300–311). Springer. https://doi.org/10.1007/978-3-030-491611_26 [Google Scholar] [Crossref]
37. Ponselvakumar, A. P., Shankar, V. P. G., Iniyan, G., & Logesh, B. (2024). Improving the cryptocurrency price prediction using deep learning. In Lecture Notes in Networks and Systems (Vol. 765, pp. 201–210). Springer. https://doi.org/10.1007/978-3-031-45678-1_21 [Google Scholar] [Crossref]
38. Raza, M. R., & Varol, A. (2021). Digital currency price analysis via deep forecasting approaches for business risk mitigation. In Proceedings of the 2nd International Informatics and Software Engineering Conference (IISEC 2021) (pp. 1–6). IEEE. https://doi.org/10.1109/IISEC2021.85125346834 [Google Scholar] [Crossref]
39. Rodrigues, F., & Machado, M. (2025). High-frequency cryptocurrency price forecasting using machine learning models: A comparative study. Information, 16(2), 85. https://doi.org/10.3390/info16020085 [Google Scholar] [Crossref]
40. Sai Somayajulu, M. V. N. S. S. R. K., & Kotaiah, B. (2023). A survey on cryptocurrency price prediction using hybrid approaches of deep learning models. In Proceedings of the 5th International Conference on Inventive Research in Computing Applications (ICIRCA 2023) (pp. 1212–1220). IEEE. https://doi.org/10.1109/ICIRCA.2023.85172177442 [Google Scholar] [Crossref]
41. Salem, A.-B. M., Yurynets, R., Yurynets, Z., & Kolisnichenko, P. (2024). Forecasting the dynamics of cryptocurrency rates based on logistic regression. CEUR Workshop Proceedings. http://ceur-ws.org/Vol3100/paper12.pdf [Google Scholar] [Crossref]
42. Sruthi, S., Saravanan, D., & Jyotsna, C. (2025). Forecasting cryptocurrency prices in the DeFi ecosystem using predictive models. In Proceedings of the 2025 International Conference on Computing for Sustainability and Intelligent Future (COMP-SIF 2025) (pp. 221–230). IEEE. https://doi.org/10.1109/COMPSIF2025.105004985256 [Google Scholar] [Crossref]
43. Syed, S., Talha, S. M., Iqbal, A., & Alshara, M. A. (2024). Seeing beyond noise: Improving cryptocurrency forecasting with linear bias correction. AI, 5(3), 145–160. https://doi.org/10.3390/ai5030145 [Google Scholar] [Crossref]
44. Tamilkodi, R., Chakravarthy, P. K., Maryam, A., & Venkat, A. (2025). Cryptocurrency price analysis and prediction using LSTM. In Proceedings of the International Conference on Multi-Agent Systems for Collaborative Intelligence (ICMSCI 2025). IEEE. https://consensus.app/papers/cryptocurrency-priceanalysis-and-prediction-using-lstm-venkat-tamilkodi/08fe3a9b00fe5236af4095ba009cc4ff [Google Scholar] [Crossref]
45. Tanrikulu, H. M., & Pabuccu, H. (2025). The effect of data types on the performance of machine learning algorithms for cryptocurrency prediction. Computational Economics, 65(1), 77–95. https://doi.org/10.1007/s10614-024-10475-8 [Google Scholar] [Crossref]
46. Vonitsanos, G., Kanavos, A., Grivokostopoulou, F., & Sioutas, S. (2024). Optimized price prediction of cryptocurrencies using deep learning on high-volume time series data. In Proceedings of the 15th [Google Scholar] [Crossref]
47. International Conference on Information, Intelligence, Systems and Applications (IISA 2024) (pp. 98– 105). IEEE. https://doi.org/10.1109/IISA.2024.85215816222 [Google Scholar] [Crossref]
48. Zafar, H., & Kapetanakis, S. (2025). Bitcoin forecasting using deep learning and time series ensemble techniques. In Lecture Notes in Computer Science (Vol. 15032, pp. 314–326). Springer. https://doi.org/10.1007/978-3-031-45698-9_27 [Google Scholar] [Crossref]
49. Zuvela, T., Lazarevic, S., Djordjevic, S., & Sladojevic, S. (2022). Cryptocurrency price prediction using deep learning. In Proceedings of the IEEE 16th International Symposium on Applied Computational [Google Scholar] [Crossref]
50. Intelligence and Informatics (SACI 2022) (pp. 253–258). IEEE. [Google Scholar] [Crossref]
51. https://doi.org/10.1109/SACI.2022.85141674455 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Impact of Foreign Direct Investment in India
- Issues Involved in Digitalisation Special Reference to Indian Tourism Growth
- Relationship Marketing and Customer Loyalty in the Fast-Moving Consumer Goods (FMCG) Industry in Nairobi County
- Financial Literacy or Financial Inclusion? Which is Which, What is What—To Achieve Uganda’s 10-Fold Economic Growth By 2040
- Harnessing Natural Gas for Economic Transformation: Overcoming the Regulatory and Infrastructural Bottlenecks in Nigeria