The Influence of Personalized Content Algorithms on Persistent Low Mood: Assessment and Intervention

Authors

Babalola J. Olajubu

American University of Nigeria, Yola, Adamawa State, Nigeria, Student Affairs Department, Counselling and Psychological Unit;Delta State University, Abraka, Nigeria, Department of Psychology (Nigeria)

Charles E. Etuka

American University of Nigeria, Yola, Nigeria, Department of General Studies (Nigeria)

Momoh L. Hussaini

American University of Nigeria, Yola, Nigeria, Department of Communication for Social and Behavioural Change (Nigeria)

Lentapwa J. Angama

American University of Nigeria, Yola, Nigeria, Department of Communication for Social and Behavioural Change (Nigeria)

Article Information

DOI: 10.47772/IJRISS.2026.10100426

Subject Category: Psychology

Volume/Issue: 10/1 | Page No: 5550-5565

Publication Timeline

Submitted: 2026-01-27

Accepted: 2026-02-02

Published: 2026-02-10

Abstract

The study was sparked by clinical observations of clients whose symptoms closely resembled depression but did not fully match diagnostic criteria. These individuals experienced persistent sadness perpetuated by algorithm driven digital content, prompting the development of the Algorithm-Induced Low Mood Scale (AILMS) to better capture this distinct mood disturbance. 50 participants were randomly assigned to either a control group receiving standard cognitive therapy or an experimental group receiving therapy combined with support to disrupt algorithm-driven content patterns. Mood scores were recorded at three points: before treatment, after treatment, and at follow-up several weeks later. There was a clear improvement over time, F(2, 47) = 75.30, p < .001, η² = .76, with scores dropping from pretest (M = 22.08) to post test (M = 10.71), and slightly rising at follow-up (M = 13.61). The experimental group showed greater improvement and maintained progress better. At follow-up, the control group experienced a significant relapse, t(48) = 4.29, p < .001. AILMS scores moderately correlated (r = .681), with Beck Depression Inventory II (BDI II), but some items did not correspond with BDI II patterns, suggesting the scale captures a unique experience. The factor analysis showed that the mood disturbance measured by AILMS involves three correlated but different parts: feelings of sadness, how users react emotionally, and how algorithms affect these emotions. Although passive social media users had higher average scores, differences were not statistically significant, F(1, 48) = 2.10, p = .154. These findings support the validity of AILMS and suggest that helping individuals disrupt mood-matching digital content loops may aid emotional recovery.

Keywords

algorithm-driven recommendations, Algorithm-Induced Low Mood emotional recovery, social media, music apps, personalized content, negative emotions

Downloads

References

1. American Psychiatric Association. (2022). Diagnostic and statistical manual of mental disorders (5th ed., text rev.). [Google Scholar] [Crossref]

2. Appel, H., Gerlach, A.L. and Crusius, J. (2016) The Interplay between Facebook Use, Social Comparison, [Google Scholar] [Crossref]

3. Envy and Depression. Current Opinion in Psychology, 9, 44-49, [Google Scholar] [Crossref]

4. https://doi.org/10.1016/j.copsyc.2015.10.006 [Google Scholar] [Crossref]

5. Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4(6), 561–571. [Google Scholar] [Crossref]

6. https://doi.org/10.1001/archpsyc.1961.01710120031004 [Google Scholar] [Crossref]

7. Berger, J., & Milkman, K. L. (2012). What makes online content viral? Journal of Marketing Research, 49(2), 192–205. https://doi.org/10.1509/jmr.10.0353 [Google Scholar] [Crossref]

8. Boers, E., Afzali, M. H., Newton, N., & Conrod, P. (2019). Association of screen time and depression in adolescence. JAMA Pediatrics, 173(9), 853–859. https://doi.org/10.1001/jamapediatrics.2019.1759 [Google Scholar] [Crossref]

9. Bronfenbrenner, U. (1979). The ecology of human development: Experiments by nature and design. Harvard University Press. [Google Scholar] [Crossref]

10. DeRubeis, R. J., Lorenzo-Luaces, L., Webb, C. A., Tang, T. Z., & Brown, G. K. (2021). Treatment resistance in depression: When psychological interventions fail to yield expected effects. Psychological Science in the Public Interest, 22(3), 72–104. https://doi.org/10.1177/15291006211019641 [Google Scholar] [Crossref]

11. Eyal, N. (2014). Hooked: How to build habit-forming products. Portfolio/Penguin. [Google Scholar] [Crossref]

12. Firth, J., Torous, J., Stubbs, B., Firth, J. A., Steiner, G. Z., Smith, L., ... & Sarris, J. (2019). The “online brain”: How the Internet may be changing our cognition. World Psychiatry, 18(2), 119–129. https://doi.org/10.1002/wps.20617 [Google Scholar] [Crossref]

13. Gillespie, T. (2014). The relevance of algorithms. In T. Gillespie, P. J. Boczkowski, & K. A. Foot (Eds.), Media technologies: Essays on communication, materiality, and society (pp. 167–194). MIT Press. [Google Scholar] [Crossref]

14. Goldenberg, A., & Gross, J. J. (2020). Digital Emotion Contagion. Trends in Cognitive Sciences, 24(4), 316-328. [Google Scholar] [Crossref]

15. Hao, K. (2021, December 20). How TikTok reads your mind. MIT Technology Review. [Google Scholar] [Crossref]

16. https://www.technologyreview.com/2021/12/20/1042516/how-tiktok-algorithm-figures-out-yourinterests/ [Google Scholar] [Crossref]

17. Henggeler, S. W., Schoenwald, S. K., Borduin, C. M., Rowland, M. D., & Cunningham, P. B. (2002). Multisystemic therapy for antisocial behavior in children and adolescents. Guilford Press. [Google Scholar] [Crossref]

18. Hunt, M. G., Marx, R., Lipson, C., & Young, J. (2018). No more FOMO: Limiting social media decreases loneliness and depression. Journal of Social and Clinical Psychology, 37(10), 751–768. https://doi.org/10.1521/jscp.2018.37.10.751 [Google Scholar] [Crossref]

19. Klug, D., & Stoyanov, S. (2022). TikTok and mental health: A scoping review. Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 16(4), Article 1. https://doi.org/10.5817/CP2022-4-1 [Google Scholar] [Crossref]

20. Kramer, A. D. I., Guillory, J. E., & Hancock, J. T. (2014). Experimental evidence of massive-scale emotional contagion through social networks. Proceedings of the National Academy of Sciences, 111(24), 8788–8790. https://doi.org/10.1073/pnas.1320040111 [Google Scholar] [Crossref]

21. Kross, E., Verduyn, P., Demiralp, E., Park, J., Lee, D. S., Lin, N., ... & Ybarra, O. (2021). Social media and well-being: Pitfalls, progress, and next steps. Trends in Cognitive Sciences, 25(1), 55–66. https://doi.org/10.1016/j.tics.2020.10.005 [Google Scholar] [Crossref]

22. Leaver, T., Highfield, T., & Abidin, C. (2020). Instagram: Visual social media cultures. Polity Press. [Google Scholar] [Crossref]

23. Lozano, B. E., Morúa, M., & Morgan, A. (2020). Applying CBT principles in a digital world: The therapeutic alliance and beyond. Journal of Cognitive Psychotherapy, 34(3), 169–179. [Google Scholar] [Crossref]

24. https://doi.org/10.1891/JCPT-D-19-00036 [Google Scholar] [Crossref]

25. Malhi, G. S., & Mann, J. J. (2018). Depression. The Lancet, 392(10161), 2299–2312. https://doi.org/10.1016/S0140-6736(18)31948-2 [Google Scholar] [Crossref]

26. Mares, M. L., Oliver, M. B., & Cantor, J. (2008). The role of television in mood regulation: Negative affect and viewer response. Communication Research, 35(3), 301–321. [Google Scholar] [Crossref]

27. https://doi.org/10.1177/0093650208315964 [Google Scholar] [Crossref]

28. Marr, B. (2016). Facebook's newsfeed algorithm: How it works and why it matters. Forbes. [Google Scholar] [Crossref]

29. https://www.forbes.com/sites/bernardmarr/2016/06/30/facebook-newsfeed-algorithm-how-it-works-andwhy-it-matters [Google Scholar] [Crossref]

30. Mihailidis, P., & Viotty, S. (2017). Spreadable spectacle in digital culture: Civic expression, fake news, and the role of media literacies in “post-fact” society. American Behavioral Scientist, 61(4), 441–454. https://doi.org/10.1177/0002764217701217 [Google Scholar] [Crossref]

31. Oliver, M. B., & Raney, A. A. (2011). Entertainment as pleasurable and meaningful: Identifying hedonic and eudaimonic motivations for entertainment consumption. Journal of Communication, 61(5), 984–1004. https://doi.org/10.1111/j.1460-2466.2011.01585.x [Google Scholar] [Crossref]

32. Przybylski, A. K., Murayama, K., DeHaan, C. R., & Gladwell, V. (2013). Motivational, emotional, and behavioral correlates of fear of missing out. Computers in Human Behavior, 29(4), 1841–1848. https://doi.org/10.1016/j.chb.2013.02.014 [Google Scholar] [Crossref]

33. Richter, P., Werner, J., Heerlein, A., Kraus, A., & Sauer, H. (1998). On the validity of the Beck Depression Inventory: A review. Psychopathology, 31(3), 160–168. https://doi.org/10.1159/000066239 [Google Scholar] [Crossref]

34. Rozin, P., & Royzman, E. B. (2001). Negativity bias, negativity dominance, and contagion. Personality and Social Psychology Review, 5(4), 296–320. https://doi.org/10.1207/S15327957PSPR0504_2 [Google Scholar] [Crossref]

35. Schultz, W. (2015). Neuronal reward and decision signals: From theories to data. Physiological Reviews, 95(3), 853–951. https://doi.org/10.1152/physrev.00023.2014 [Google Scholar] [Crossref]

36. Thorson, K., & Wells, C. (2016). Curated flows: A framework for mapping media exposure in the digital age. Political Communication, 33(1), 20–39. https://doi.org/10.1080/10584609.2015.1038452 [Google Scholar] [Crossref]

37. Torous, J., & Hsin, H. (2018). Empowering the digital therapeutic relationship: Virtual clinics for digital health interventions. NPJ Digital Medicine, 1, Article 16. https://doi.org/10.1038/s41746-018-0027-1 [Google Scholar] [Crossref]

38. U.S. Department of Health and Human Services. (2023). Digital media and youth mental health: A national agenda. https://www.hhs.gov/sites/default/files/digital-media-youth-mental-health.pdf [Google Scholar] [Crossref]

39. Valkenburg, P.M., Meier, A., Beyens, I. (2022) Social media use and its impact on adolescent mental health: An umbrella review of the evidence. Current Opinion in Psychology, 44:58-68. doi: [Google Scholar] [Crossref]

40. 1016/j.copsyc.2021.08.017. [Google Scholar] [Crossref]

41. Valkenburg, P. M., Koutamanis, M., & Vossen, H. G. M. (2017). The concurrent and longitudinal relationships between adolescents’ use of social network sites and their social self-esteem. Computers in Human Behavior, 76, 35–41. https://doi.org/10.1016/j.chb.2017.07.008 [Google Scholar] [Crossref]

42. Vally, Z., & D’Souza, C. G. (2019). Abstinence from social media use, subjective well-being, stress, and loneliness. Perspectives in Psychiatric Care, 55(4), 649–654. https://doi.org/10.1111/ppc.12364 [Google Scholar] [Crossref]

43. Verduyn, P., Ybarra, O., Résibois, M., Jonides, J., & Kross, E. (2017). Do social network sites enhance or undermine subjective well-being? A critical review. Social Issues and Policy Review, 11(1), 274–302. https://doi.org/10.1111/sipr.12033 [Google Scholar] [Crossref]

44. Vogel, E. A., Rose, J. P., Roberts, L. R., & Eckles, K. (2014). Social comparison, social media, and selfesteem. Psychology of Popular Media Culture, 3(4), 206–222. https://doi.org/10.1037/ppm0000047 [Google Scholar] [Crossref]

45. Wu, T. (2016). The attention merchants: The epic scramble to get inside our heads. Knopf. [Google Scholar] [Crossref]

46. Zillmann, D. (1988). Mood management: Using entertainment to full advantage. In L. Donohew, H. Sypher, & E. T. Higgins (Eds.), Communication, social cognition, and affect (pp. 147–171). Lawrence Erlbaum Associates. [Google Scholar] [Crossref]

47. Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. Public Affairs. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles