Environmental Modelling of Malaria Risk Areas in The Local Governments of Sakété and Ifangni, in Southeastern Benin
Authors
University of Abomey-Calavi (UAC)/BENIN (Benin)
Ketou-Adja-Ouèrè-Pobè Health Zone Office (Benin)
University of Abomey-Calavi (UAC) / Multidisciplinary Doctoral School-Space (Benin)
Virgile Narcisse Sènan AYIMADE
the University de Brest (UBO (Benin)
Article Information
DOI: 10.47772/IJRISS.2026.10100613
Subject Category: Social science
Volume/Issue: 10/1 | Page No: 7876-7887
Publication Timeline
Submitted: 2026-01-31
Accepted: 2026-02-06
Published: 2026-02-20
Abstract
Malaria remains a major public health challenge in Benin, with transmission strongly influenced by local environmental and climatic conditions. Identifying areas at high risk is essential for guiding targeted interventions. This study aimed to model environmental determinants of malaria risk in the local government areas of Sakété and Ifangni in southeastern Benin. Climatic data (temperature and relative humidity) and remote sensing-derived environmental indices, including the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Difference Pond Index (NDPI), were analyzed to assess their association with malaria morbidity. A linear mixed-effects model was used to quantify the contributions of these variables to spatial variations in malaria prevalence. Risk maps were generated by integrating climatic and environmental predictors. Malaria morbidity exhibited a heterogeneous spatial distribution, with higher incidence observed in areas combining favorable climatic conditions and suitable environmental habitats for Anopheles mosquitoes. Temperature and relative humidity were identified as primary climatic determinants, influencing vector survival and parasite development. NDVI and NDPI were positively associated with malaria risk, indicating the importance of vegetation cover and aquatic habitats as breeding sites, while NDWI highlighted the role of soil surface moisture in sustaining larval habitats. The resulting risk map effectively delineated high-risk zones, providing a spatially explicit tool for targeted malaria control.
Keywords
Malaria risk, Climatic factors, environmental indices
Downloads
References
1. Ahohoundo P. C. A., Boni G. (2024): Analyse spatiale de la morbidité palustre dans la zone sanitaire Sakété-Ifangni, au sud-est du Bénin. Revue IJPSAT, Vol. 45, N° 1, juin 2024, pp. 273–287. [Google Scholar] [Crossref]
2. Ahohoundo Parfait Cossi Alexis, Boni Gratien (2024): Évolution temporelle de l'incidence du paludisme dans la zone sanitaire Sakété-Ifangni: influence du climat local et des mesures de prévention. Revue Afrique Science, 24(5), mai 2024, pp. 93–107. [Google Scholar] [Crossref]
3. Aïkpon R., Missihoun A., Lokossou A., Aïkpon G., Salifou S., Dansi A., Agbangla C. (2020): Hétérogénéité génétique et résistance des vecteurs du paludisme (Anopheles gambiae s.l) aux insecticides en zone cotonnière au Bénin. Int. J. Biol. Chem. Sci., 14(8), 2724–2736. ISSN 1997-342X (Online), ISSN 1991-8631 (Print). [Google Scholar] [Crossref]
4. Alum E. U., Ugwu O., Egba S. I., Uti Daniel E., Benedict A. N. (2024): Climate variability and malaria transmission: unraveling the complex relationship. INOSR Scientific Research, 11, pp. 16–22. https://doi.org/10.59298/INOSRSR/2024/1.1.21622 [Google Scholar] [Crossref]
5. Birane Cissé, Niang Diène Aminata, Ndiaye Jean Louis, Dione Jaques André, Christopher Bryant, Quensière Jacques, Alioune Kane, Ousmane Faye (2016): Facteurs de risque environnementaux de la persistance du paludisme dans la banlieue de Dakar (Guédiawaye-Pikine). International Journal of Innovation and Applied Studies, Vol. 15, n° 2, pp. 275–290. ISSRJ-ISSN 2028-93. http://www.ijias.issr-journals.org/ [Google Scholar] [Crossref]
6. Ceccato P., Connor S. J., Jeanne I., Thomson M. C. (2005): Application of remote sensing to the mapping of irrigated areas and malaria risk in West Africa. International Journal of Health Geographics, 4(1), 84–95. https://doi.org/10.1186/1476-072X-4-84 [Google Scholar] [Crossref]
7. Djamé Y., Kpatcha T., Ahouangon S. (2018): Climatic determinants of malaria transmission in the Oti Prefecture, northern Togo. Malaria Journal, 17(1), 222. https://doi.org/10.1186/s12936-018-2380x [Google Scholar] [Crossref]
8. Ekpa D. E., Oyetunde A., Nwosu I. (2023): Spatial distribution of malaria morbidity and its climatic correlates in Ondo State, Nigeria. Malaria Journal, 22(1), 5. https://doi.org/10.1186/s12936-02304567-2 [Google Scholar] [Crossref]
9. Fagbohoun L., Gbaguidi F., Ayédoun M., Mathe C., Moudachirou M., Vieillescazes C. (2014): Étude ethnobotanique et phytochimique des plantes tinctoriales, sources de colorants naturels et matériaux résineux traditionnels du Bénin dans le domaine artisanal (Ifangni/Bénin). Ethnopharmacologia, n° 52, décembre 2014, pp. 56–66. [Google Scholar] [Crossref]
10. Gao B. (1996): NDWI – a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), pp. 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3 [Google Scholar] [Crossref]
11. Gromek K., Gameiro T., Catarino L., Serrano R., Silva O. (2020): Botanical quality control of Terminalia albida leaf. Planta Med, 36–49. DOI: 10.1055/s-0034-1394913 [Google Scholar] [Crossref]
12. Honvo S. Z. A., Dossou-Yovo A. (2021): Mutations socio-spatiales et extension urbaine au sud du Plateau de Sakété (Sud-Est du Bénin). International Journal of Progressive Sciences and Technologies (IJPSAT), Vol. 28, N° 1, August 2021, pp. 01–16. [Google Scholar] [Crossref]
13. Ita I., Nwankwo U., Okeke C. (2017): Temperature and humidity effects on Anopheles vector survival and malaria transmission in West Africa. Parasites & Vectors, 10(1), 169. https://doi.org/10.1186/s13071-017-2145-6 [Google Scholar] [Crossref]
14. Kabaria C. W., Mbogo C., Snow R. W. (2016): The effect of vector longevity on malaria transmission dynamics in endemic settings. Parasites & Vectors, 9(1), 8. https://doi.org/10.1186/s13071-016-1305-x [Google Scholar] [Crossref]
15. Lacaux Jean-Pierre, Tourre Yves, Vignolles Cécile, Ndione Jacques André, Lafaye Murielle (2007): Classification of ponds from high-spatial resolution remote sensing: application to Rift Valley Fever epidemics in Senegal. Remote Sensing of Environment, 106, 66–74. http://dx.doi.org/10.1016/j.rse.2006.07.012 [Google Scholar] [Crossref]
16. Médéou F. K. (2015): Influence of local climatic variability on malaria prevalence in the Collines region, Benin. African Journal of Environmental Science and Technology, 9(2), 88–97. [Google Scholar] [Crossref]
17. Mordecai A. E., Cohen J. M., Evans M. V., Gudapati P., Johnson L. R., Lippi C. A., Murdock C. C. (2013): Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecology Letters, 16(1), 22–30. https://doi.org/10.1111/ele.12015 [Google Scholar] [Crossref]
18. Nigussie T. Z., Zewotir T., Muluneh E. K. (2023): Seasonal and spatial variations of malaria transmissions in northwest Ethiopia: evaluating climate and environmental effects using generalized additive model. Heliyon, 9, e15252. https://doi.org/10.1016/j.heliyon.2023.e15252 [Google Scholar] [Crossref]
19. Okunlola O. A., Oyeyemi O. T. (2019): Spatio-temporal analysis of association between incidence of malaria and environmental predictors of malaria transmission in Nigeria. Scientific Reports, 9, 17500. https://doi.org/10.1038/s41598-019-53814-x [Google Scholar] [Crossref]
20. Palo S. K., Panda P. P., Parida D., Malick S. T., Pati S. (2025): Remote sensing and GIS-based study to predict risk zones for mosquito-borne diseases in Cuttack district, Odisha, India. GeoHealth, 9, e2023GH001007. [Google Scholar] [Crossref]
21. PNLP (2023): Réunion sous-régionale des programmes paludisme et des partenaires d’Afrique de l’Ouest et du centre. Document de communication, Roll Back Malaria, Abidjan, 22 p. [Google Scholar] [Crossref]
22. Prussing C., Vasquez C., Rodriguez H. (2019): Landscape and water body associations with Anopheles darlingi larval habitats in rural Amazonian villages. Acta Tropica, 192, 4–12. https://doi.org/10.1016/j.actatropica.2018.09.004 [Google Scholar] [Crossref]
23. Russel S. (2004): The economic burden of illness for households in developing countries: a review of studies focusing on malaria, tuberculosis, and HIV/AIDS. American Journal of Tropical Medicine and Hygiene, 71(suppl 2), pp. 147–155. https://doi.org/10.4269/ajtmh.2004.71.147 [Google Scholar] [Crossref]
24. Sauerborn R., Schroeder D., Becher H. (2012): Soil moisture and vector breeding: implications for malaria transmission in Nouna, Burkina Faso. Tropical Medicine & International Health, 17(1), 42–43. https://doi.org/10.1111/j.1365-3156.2011.02925.x [Google Scholar] [Crossref]
25. Sovi A., Govoétchan R., Tokponnon F., Hounkonnou H., Aïkpon R., Agossa F., Gnanguenon V., Salako A., Agossou C., Ossè R., Oké M., Gbénou D., Massougbodji A., Akogbéto M. (2013): Impact of land-use on malaria transmission in the Plateau region, southeastern Benin. Parasites & Vectors, 6, article number 352. https://doi.org/10.1186/1756-3305-6-352 [Google Scholar] [Crossref]
26. Tewara M. A., Mbah-Fongkimeh P. N., Dayimu A., Kang F., Xue F. (2018): Small-area spatial statistical analysis of malaria clusters and hotspots in Cameroon, 2000–2015. BMC Infectious Diseases, 18. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286522/ [Google Scholar] [Crossref]
27. Tokponnon T. F., Ossè R., Padonou G. G., Affoukou C. D., Sidick A., Sewade W., Fassinou A., Koukpo C., Akinro B., Messenger L., Okê M., Tchévoédé A., Ogouyemi-Hounto A., Gazard K. D., Akogbéto M. (2023): Entomological characteristics of malaria transmission across Benin: an essential element for improved deployment of vector control interventions. Insects, 14(1), 52. https://doi.org/10.3390/insects14010052 [Google Scholar] [Crossref]
28. Tucker C. (1979): Remote sensing of leaf water content in the near infrared. US National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, Md, NASA-TM-80291, mis en ligne le 30 novembre 1995, consulté le 20 juillet 2019. https://ntrs.nasa.gov/search.jsp?R=19820049362 [Google Scholar] [Crossref]
29. Yang Y. G., Li X. H., Xu Z. Q. (2006): Predicting intermediate host habitats for schistosomiasis using NDVI and soil moisture indices. International Journal of Remote Sensing, 27(1), 88–90. https://doi.org/10.1080/01431160512331303245 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- The Impact of Ownership Structure on Dividend Payout Policy of Listed Plantation Companies in Sri Lanka
- Urban Sustainability in North-East India: A Study through the lens of NER-SDG index
- Performance Assessment of Predictive Forecasting Techniques for Enhancing Hospital Supply Chain Efficiency in Healthcare Logistics
- The Fractured Self in Julian Barnes' Postmodern Fiction: Identity Crisis and Deflation in Metroland and the Sense of an Ending
- Impact of Flood on the Employment, Labour Productivity and Migration of Agricultural Labour in North Bihar