Decision Support System for Zakat Asnaf Selection among Uitm Melaka Students Using Artificial Neural Networks

Authors

Ismadi Md Badarudin

Fakulti Sains Komputer dan Matematik UiTM (Malaysia)

Ameera Iman Hassan

Cloud Mile Sdn. Bhd, (Malaysia)

Suzana Ahmad

Cloud Mile Sdn. Bhd, (Malaysia)

Yuzi Mahmud

Cloud Mile Sdn. Bhd, (Malaysia)

Khairunnisa Abd Samad

Fakulti Pengurusan dan Perniagaan UiTM (Malaysia)

Noor Afni Deraman

Fakulti Sains Komputer dan Matematik UiTM (Malaysia)

Article Information

DOI: 10.47772/IJRISS.2025.923MIC3ST250015

Subject Category: Education

Volume/Issue: 9/23 | Page No: 179-187

Publication Timeline

Submitted: 2025-08-12

Accepted: 2025-08-20

Published: 2025-10-24

Abstract

This study developed a Decision Support System for Zakat Asnaf Selection (DSSZAS) to address inefficiencies in the manual distribution of zakat among students at Universiti Teknologi MARA (UiTM) Cawangan Melaka. The current process faces challenges in accurately identifying eligible asnaf and distributing promptly. Therefore, to solve this, the DSSZAS leverages Artificial Neural Networks (ANN) to automate the classification of students into asnaf categories (faqr, miskin, and fisabilillah) based on socioeconomic data. The system was designed and trained with historical data using the Waterfall methodology. A comparison method was deployed between the generated result and human decision to test the result reliability. It achieves an accuracy rate of 1.0% with a minimized Mean Squared Error (MSE) of 0.06. The system significantly reduces human bias and enhances efficiency through automated decision-making and email notifications that inform students of their application status., DSSZAS strengthens the fairness and reliability of zakat distribution by providing a transparent and data-driven approach.

Keywords

Artificial Neural Networks (ANN), Classification, Decision Support System

Downloads

References

1. Othman, S. H. B., Ismon, A. B. M., & Fahurruzi, M. F. (2020). The Study on The Development of Asnaf fisabilillah by The Islamic Religious Council of Malacca. International Journal of Academic Research in Business and Social Sciences, 10(2). https://doi.org/10.6007/ijarbss/v10-i2/6929 [Google Scholar] [Crossref]

2. Radzi, N. M., & Kenayathulla, H. B. (2017). Educational Equity for Malaysian Urban Poor Muslim Students. Malaysian Online Journal of Educational Management, 5(4), 47–62. https://doi.org/10.22452/mojem.vol5no4.4 [Google Scholar] [Crossref]

3. Salleh, M. C. M., & Chowdhury, M. A. M. (2020). Technological Transformation in Malaysian Zakat Institutions. International Journal of Zakat, 5(3), 44–56. https://doi.org/10.37706/ijaz.v5i3.263 [Google Scholar] [Crossref]

4. Pusat Pengurusan Wakaf, Zakat dan Infak (2022, Oct 14). https://wazan.upm.edu.my/permohonan zakat/permohonan_zakat_pelajar/bagaimana_proses_permohonan_zakat-63697 [Google Scholar] [Crossref]

5. Hamzah, N. B., Masroom, Mohd. N. B., Ruskam, A. B., & Saim, A. I. B. (2021). Penggunaan Wang Bantuan Zakat Dalam Kalangan Asnaf Fisabilillah Dan Asnaf Gharim Di Universiti Teknologi Malaysia. AZKA International Journal of Zakat & Social Finance, 1(2), 187–209. https://doi.org/10.51377/azjaf.vol1no2.37 [Google Scholar] [Crossref]

6. Pusat Islam Unit Pengurasan Zakat UTHM (2025, Mac 21). https://pi.uthm.edu.my/index.php/zakat [Google Scholar] [Crossref]

7. Bahri E. S., Salamun A, and Arif Z. (2022), Measuring the Effectiveness of Zakat Disbursement at Amil Zakat Institution Dewan Da’wah Utilizing Zakat Core Principle Approach, Al- Maal: Journal of Islamic Economics and Banking, vol. 4, no. 1, p. 119, https://doi.org/10.31000/almaal.v4i1.5937. [Google Scholar] [Crossref]

8. Alhajeri R. and Alhashem A. (2023), Using Artificial Intelligence to Combat Money Laundering, Intelligent Information Management, vol. 15, no. 4, pp. 284–305, https://doi.org/10.4236/iim.2023.154014. [Google Scholar] [Crossref]

9. Miftahur A. H., Leni S, and Kholidah (2020), Ziswaf Collection Strategy on LAZISMU X, Indonesia, Proceedings of the 1st Borobudur International Symposium on Humanities, Economics and Social Sciences (BIS-HESS 2019), https://doi.org/10.2991/assehr.k.200529.098. [Google Scholar] [Crossref]

10. Sulaiman H. and Jamil N. (2014), Information security governance model to enhance zakat information management in Malaysian zakat institutions, Proceedings of the 6th International Conference on Information Technology and Multimedia, https://doi.org/10.1109/icimu.2014.7066630. [Google Scholar] [Crossref]

11. Radzi, N. M., & Kenayathulla, H. B. (2017). Educational Equity for Malaysian Urban Poor Muslim Students. Malaysian Online Journal of Educational Management, 5(4), 47–62. https://doi.org/10.22452/mojem.vol5no4.4 [Google Scholar] [Crossref]

12. Saad, A. Y. Q., & Al Foori, A. M. (2020). Zakat and Tax: A Comparative Study in Malaysia. International Journal of Innovation, Creativity and Change, 10(12), 140–151. https://www.ijicc.net/images/vol10iss12/101213_Saad_2020_E_R.pdf [Google Scholar] [Crossref]

13. Zulkifli, M. F., Taha, R., Awang, R. @ N., Mohd Nor, M. N., & Ali, A. (2021). Combating Poverty in Malaysia: The Role of Zakat. The Journal of Asian Finance, Economics and Business, 8(5), 505–513. https://doi.org/10.13106/jafeb.2021.vol8.no5.0505 [Google Scholar] [Crossref]

14. Khalil, A. J., Barhoom, A. M., Abu-Nasser, B. S., Musleh, M. M., & Abu-Naser, S. S. (2019). Energy Efficiency Predicting using Artificial Neural Network. International Journal of Academic Pedagogical Research (IJAPR), 3(9), 1–8. http://dstore.alazhar.edu.ps/xmlui/handle/123456789/487 [Google Scholar] [Crossref]

15. Al-Mubayyed, O. M., Abu-Nasser, B. S., & Abu-Naser, S. S. (2019). Predicting Overall Car Performance Using Artificial Neural Network. International Journal of Academic and Applied Research (IJAAR), 3(1), 1–5. http://dstore.alazhar.edu.ps/xmlui/handle/123456789/127 [Google Scholar] [Crossref]

16. Raptodimos, Y., & Lazakis, I. (2018). Using artificial neural network-self-organising map for data clustering of marine engine condition monitoring applications. Ships and Offshore Structures, 13(6), 649–656. https://doi.org/10.1080/17445302.2018.1443694 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles