A Case Study on the Development and Simulation of a High-Efficiency Flyback Converter for Portable Solar LED Lighting
Authors
Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka, 76100 Melaka (Malaysia)
Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka, 76100 Melaka (Malaysia)
Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka, 76100 Melaka (Malaysia)
Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka, 76100 Melaka (Malaysia)
Article Information
DOI: 10.47772/IJRISS.2025.910000054
Subject Category: Sustainable
Volume/Issue: 9/10 | Page No: 641-651
Publication Timeline
Submitted: 2025-09-29
Accepted: 2025-11-04
Published: 2025-11-03
Abstract
This paper presents the detailed design and analysis of a compact and highly efficient flyback converter intended for a portable solar-powered LED lighting system. This case study originated as an essential assignment within a Power Electronics course, designed to solidify students' theoretical knowledge of isolated DC-to-DC converters, while simultaneously assessing their proficiency in technical report writing. The primary objective of the design is to convert a variable 24VDC solar input into a regulated 40VDC output at 40W, critically addressing the severe lack of electricity in rural and disaster-affected zones. The methodology focused on designing the flyback topology for Continuous Conduction Mode (CCM), emphasizing the determination of the optimal transformer turns ratio (1:2.5), the selection of a 100kHz switching frequency, switching duty ratio (D) of 0.4, and precise component sizing to control voltage ripple. Simulation results, verified using PSIM software, confirmed excellent voltage regulation (achieving 39.7V) with a remarkably low peak-to-peak voltage ripple (only 0.5%, or 0.2V), alongside a simulated efficiency of approximately 94%. This study promotes a robust, sustainable, and easily maintainable power solution that directly contributes to energy access, sustainability, and electronic waste minimization in off-grid contexts.
Keywords
Flyback Converter, Off-grid Power System, Solar Energy, LED Lighting
Downloads
References
1. Baharom, R., Hashim, N., Hannoon, N. M. S., & Rahman, N. F. A. (2025). Enhancing engineering education in electric drive systems through integrated computer simulation modules. International Journal of Power Electronics and Drive Systems (IJPEDS), 16(1), 45–54. [Google Scholar] [Crossref]
2. Carvalho, F., Chibante, R., & Vaz de Carvalho, C. (2024). An interactive pedagogical tool for simulation of controlled rectifiers. Information, 15(6), 327. [Google Scholar] [Crossref]
3. Gökçegöz, F., Akboy, E., & Obdan, A. H. (2021). Analysis and design of a flyback converter for universal input and wide load ranges. Electrica, 21(2), 235–241. [Google Scholar] [Crossref]
4. Zhu, B., Yang, Y., Wang, K., Liu, J., & Vilathgamuwa, D. M. (2023). High transformer utilization ratio and high voltage conversion gain flyback converter for photovoltaic application. IEEE Trans Ind Appl, 60(2), 2840–2851. [Google Scholar] [Crossref]
5. Devi, S., Krishnamoorthi, K., & Ilakkia, T. (2021). Design of enhanced flyback converter for PV application. Turkish Journal of Computer and Mathematics Education, 12(9), 2864–2868. [Google Scholar] [Crossref]
6. Hasan, R., Hassan, W., & Xiao, W. (2020). A high gain flyback DC-DC converter for PV applications. In 2020 IEEE REGION 10 CONFERENCE (TENCON) (pp. 522–526). IEEE. [Google Scholar] [Crossref]
7. Meshael, H., Elkhateb, A., & Best, R. (2023). Topologies and design characteristics of isolated high step-up DC–DC converters for photovoltaic systems. Electronics (Basel), 12(18), 3913. [Google Scholar] [Crossref]
8. Afonso, J. L., et al. (2021). A review on power electronics technologies for power quality improvement. Energies (Basel), 14(24), 8585. [Google Scholar] [Crossref]
9. Kornaga, V. I., Pekur, D., Kolomzarov, Y., Sorokin, V. M., & Nikolaenko, Y. (2023). Design of a LED driver with a flyback topology for intelligent lighting systems with high power and efficiency. Semiconductor Physics, Quantum Electronics and Optoelectronics, 26(2), 222–229. [Google Scholar] [Crossref]
10. Esteki, M., Khajehoddin, S. A., Safaee, A., & Li, Y. (2023). LED systems applications and LED driver topologies: A review. IEEE Access, 11, 38324–38358. [Google Scholar] [Crossref]
11. [Tseng, S.-Y., & Fan, J.-H. (2022). Zeta/flyback hybrid converter for solar power applications. Sustainability, 14(5), 2924. [Google Scholar] [Crossref]
12. Widagdo, R. S., Slamet, P., Andriawan, A. H., Hartayu, R., & Hariadi, B. (2024). Design of zero current switching flyback converter for power efficiency in solar power system. In 2024 International Conference on Electrical Engineering and Computer Science (ICECOS) (pp. 71–76). IEEE. [Google Scholar] [Crossref]
13. Lodh, T., Pragallapati, N., & Agarwal, V. (2018). Novel control scheme for an interleaved flyback converter based solar PV microinverter to achieve high efficiency. IEEE Trans Ind Appl, 54(4), 3473–3482. [Google Scholar] [Crossref]
14. Fang, L., et al. (2023). Eco-design implementation in power electronics: A litterature review. In International Symposium on Advances Technologies in Electrical Systems (SATES 23). [Google Scholar] [Crossref]
15. Luewisuthichat, K., Boonprasert, P., Ekkaravarodome, C., & Bilsalam, A. (2020). Analysis and implement DC-DC integrated boost-flyback converter with LED street light stand-by application. In 2020 International Conference on Power, Energy and Innovations (ICPEI) (pp. 197–200). IEEE. [Google Scholar] [Crossref]
16. Hannan, M. A., Hoque, M. M., Hussain, A., Yusof, Y., & Ker, P. J. (2018). State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations. Ieee Access, 6, 19362–19378. [Google Scholar] [Crossref]