Convergence, Not Accumulation: Digital Maturity and Organisational Resilience among SDA Self-Supporting Ministries in Kenya
Authors
Adventist University of Africa (Africa)
Adventist University of Africa (Africa)
Adventist University of Africa (Africa)
Adventist University of Africa (Africa)
Article Information
DOI: 10.47772/IJRISS.2025.91100391
Subject Category: Technology
Volume/Issue: 9/11 | Page No: 4947-4966
Publication Timeline
Submitted: 2025-12-01
Accepted: 2025-12-06
Published: 2025-12-11
Abstract
This study examines whether digital maturity strengthens organisational resilience among Seventh-day Adventist–affiliated self-supporting ministries in Kenya. Two propositions are tested: that Digital Intensity—governed data, simple automation/analytics, and reliable “green” infrastructure—relates positively to resilience, and that the convergence of Digital Intensity with Transformation Management Intensity—mission-linked strategy, baseline readiness, and human-centric adoption—explains resilience better than either stream alone. A quantitative, explanatory, cross-sectional survey of 141 ministries was analysed using hierarchical confirmatory factor analysis and structural equation modelling with robust estimation and bootstrapped confidence intervals. The measurement model met reliability, convergent, and discriminant validity standards with acceptable global fit. Structurally, Digital Intensity demonstrated a positive, statistically significant association with resilience, and the convergence construct provided the strongest pathway, explaining higher variance and remaining stable across sensitivity checks. The study concludes that resilience gains in resource-constrained ministries arise less from accumulating tools than from coupling governed information, lightweight automation, and dependable infrastructure with focused strategy, cyber hygiene, and adoption rituals. Findings inform shared services, lightweight standards, and micro-learning initiatives for African faith-based nonprofits.
Keywords
digital maturity, organisational resilience, faith-based nonprofits
Downloads
References
1. Armstrong, J. S., & Overton, T. S. (1977). Estimating nonresponse bias in mail surveys. Journal of Marketing Research, 14(3), 396–402. [https://doi.org/10.1177/002224377701400320](https://doi.org/10.1177/002224377701400320) [Google Scholar] [Crossref]
2. Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120. [https://doi.org/10.1177/014920639101700108](https://doi.org/10.1177/014920639101700108) [Google Scholar] [Crossref]
3. Beaton, D. E., Bombardier, C., Guillemin, F., & Ferraz, M. B. (2000). Guidelines for the process of cross-cultural adaptation of self-report measures. Spine,25(24),3186–3191. [https://doi.org/10.1097/00007632-200012150-00014](https://doi.org/10.1097/00007632-200012150-00014) [Google Scholar] [Crossref]
4. Bentler, P. M., & Chou, C. P. (1987). Practical issues in structural modelling. Sociological Methods & Research, 16(1), 78–117. [https://doi.org/10.1177/0049124187016001004](https://doi.org/10.1177/0049124187016001004) [Google Scholar] [Crossref]
5. Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). Guilford Press. [Google Scholar] [Crossref]
6. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). Springer. [https://doi.org/10.1007/b97636](https://doi.org/10.1007/b97636) [Google Scholar] [Crossref]
7. Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling, 14(3), 464–504. [https://doi.org/10.1080/10705510701301834](https://doi.org/10.1080/10705510701301834) [Google Scholar] [Crossref]
8. Coltman, T., Tallon, P. P., Sharma, R., & Queiroz, M. (2015). Strategic IT alignment: Twenty-five years on. Journal of Information Technology, 30(2), 91–100. [https://doi.org/10.1057/jit.2014.35](https://doi.org/10.1057/jit.2014.35) [Google Scholar] [Crossref]
9. Duchek, S. (2020). Organisational resilience: A capability-based conceptualisation. Business Research, 13, 215–246. [https://doi.org/10.1007/s40685-019-0085-7](https://doi.org/10.1007/s40685-019-0085-7) [Google Scholar] [Crossref]
10. Eisenhardt, K. M., & Martin, J. A. (2000). Dynamic capabilities: What are they? Strategic Management Journal, 21(10–11), 1105–1121. [https://doi.org/10.1002/1097-0266(200010/11)21:10/11](https://doi.org/10.1002/1097-0266%28200010/11%2921:10/11)<1105::AID-SMJ133>3.0.CO;2-E [Google Scholar] [Crossref]
11. Enders, C. K. (2010). Applied missing data analysis. Guilford Press. [Google Scholar] [Crossref]
12. Flora, D. B., & Curran, P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9(4), 466–491. [https://doi.org/10.1037/1082-989X.9.4.466](https://doi.org/10.1037/1082-989X.9.4.466) [Google Scholar] [Crossref]
13. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. [https://doi.org/10.1177/002224378101800104](https://doi.org/10.1177/002224378101800104) [Google Scholar] [Crossref]
14. Gerow, J. E., Grover, V., Thatcher, J. B., & Roth, P. L. (2014). Looking toward the future of IT–business strategic alignment through the past: A meta-analysis. MIS Quarterly, 38(4), 1059–1085. [https://doi.org/10.25300/MISQ/2014/38.4.02](https://doi.org/10.25300/MISQ/2014/38.4.02) [Google Scholar] [Crossref]
15. Gile, K. J., & Handcock, M. S. (2010). Respondent‐driven sampling: An assessment of current methodology. Sociological Methodology, 40(1), 285–327. [https://doi.org/10.1111/j.1467-9531.2010.01223.x](https://doi.org/10.1111/j.1467-9531.2010.01223.) [Google Scholar] [Crossref]
16. GSMA. (2024). The State of Mobile Internet Connectivity 2024. GSMA. [https://www.gsma.com/r/wp-content/uploads/2024/06/GSMA-State-of-Mobile-Internet-Connectivity-2024.pdf](https://www.gsma.com/r/wp-content/uploads/2024/06/GSMA-State-of-Mobile-Internet-Connectivity-2024.pdf) [Google Scholar] [Crossref]
17. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Cengage. [Google Scholar] [Crossref]
18. Hanelt, A., Bohnsack, R., Marz, D., & Marante, C. A. (2021). A systematic review of the literature on digital transformation: Insights and implications for strategy and Organisational change. Journal of Management Studies, 58(5), 1159–1197. [https://doi.org/10.1111/joms.12639](https://doi.org/10.1111/joms.12639) [Google Scholar] [Crossref]
19. He, X., Jiang, Z., & Zhang, S. (2022). Digital transformation and Organisational resilience: Evidence from China. Journal of Business Research, 142, 35–47. [https://doi.org/10.1016/j.jbusres.2021.12.045](https://doi.org/10.1016/j.jbusres.2021.12.045) [Google Scholar] [Crossref]
20. Heckathorn, D. D. (1997). Respondent-driven sampling: A new approach to the study of hidden populations. Social Problems, 44(2), 174–199. [https://doi.org/10.2307/3096941](https://doi.org/10.2307/3096941) [Google Scholar] [Crossref]
21. Heckathorn, D. D. (2002). Respondent-driven sampling II: Deriving valid population estimates from chain-referral samples of hidden populations. Social Problems, 49(1), 11–34. [https://doi.org/10.1525/sp.2002.49.1.11](https://doi.org/10.1525/sp.2002.49.1.11) [Google Scholar] [Crossref]
22. Henderson, J. C., & Venkatraman, N. (1993). Strategic alignment: Leveraging information technology for transforming organisations. IBM Systems Journal, 32(1), 4–16. [https://doi.org/10.1147/sj.321.0004](https://doi.org/10.1147/sj.321.0004) [Google Scholar] [Crossref]
23. Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modelling. Journal of the Academy of Marketing Science, 43(1), 115–135. [https://doi.org/10.1007/s11747-014-0403-8](https://doi.org/10.1007/s11747-014-0403-8) [Google Scholar] [Crossref]
24. Hillmann, J., & Guenther, E. (2021). Organisational resilience: A valuable construct for management research? International Journal of Management Reviews, 23(1), 7–44. [https://doi.org/10.1111/ijmr.12239](https://doi.org/10.1111/ijmr.12239) [Google Scholar] [Crossref]
25. Hu, L.-T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modelling, 6(1), 1–55. [https://doi.org/10.1080/10705519909540118](https://doi.org/10.1080/10705519909540118) [Google Scholar] [Crossref]
26. International Test Commission. (2018). The ITC Guidelines for Translating and Adapting Tests (Second Edition). International Journal of Testing, 18(2), 101–134. [https://doi.org/10.1080/15305058.2017.1398166](https://doi.org/10.1080/15305058.2017.1398166) [Google Scholar] [Crossref]
27. Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31–36. [https://doi.org/10.1007/BF02291575](https://doi.org/10.1007/BF02291575) [Google Scholar] [Crossref]
28. Kane, G. C., Palmer, D., Phillips, A. N., Kiron, D., & Buckley, N. (2015). Strategy, not technology, drives digital transformation. MIT Sloan Management Review & Deloitte. [https://sloanreview.mit.edu/projects/strategy-drives-digital-transformation/](https://sloanreview.mit.edu/projects/strategy-drives-digital-transformation/) [Google Scholar] [Crossref]
29. Kenya National Assembly. (2019). The Data Protection Act, No. 24 of 2019, Kenya Law. [http://kenyalaw.org:8181/exist/kenyalex/actview.xql?actid=No.%2024%20of%202019](http://kenyalaw.org:8181/exist/kenyalex/actview.xql?actid=No.%2024%20of%202019) [Google Scholar] [Crossref]
30. Kline, R. B. (2016). Principles and practice of structural equation modelling (4th ed.). Guilford Press. [Google Scholar] [Crossref]
31. Lee, A. V., Vargo, J., & Seville, E. (2013). Developing a tool to measure and benchmark Organisational resilience. Natural Hazards Review, 14(1), 29–41. [https://doi.org/10.1061/(ASCE)NH.1527-6996.0000075](https://doi.org/10.1061/%28ASCE%29NH.1527-6996.0000075) [Google Scholar] [Crossref]
32. Lengnick-Hall, C. A., Beck, T. E., & Lengnick-Hall, M. L. (2011). Developing a capacity for Organisational resilience through strategic human resource management. Human Resource Management Review, 21(3), 243–255. [https://doi.org/10.1016/j.hrmr.2010.07.001](https://doi.org/10.1016/j.hrmr.2010.07.001) [Google Scholar] [Crossref]
33. Little, R. J. A., & Rubin, D. B. (2019). Statistical analysis with missing data (3rd ed.). Wiley. [https://doi.org/10.1002/9781119482260](https://doi.org/10.1002/9781119482260) [Google Scholar] [Crossref]
34. MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modelling. Psychological Methods, 1(2), 130–149. [https://doi.org/10.1037/1082-989X.1.2.130](https://doi.org/10.1037/1082-989X.1.2.130) [Google Scholar] [Crossref]
35. Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519–530. [https://doi.org/10.1093/biomet/57.3.519](https://doi.org/10.1093/biomet/57.3.519) [Google Scholar] [Crossref]
36. O’Brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41, 673–690. [https://doi.org/10.1007/s11135-006-9018-6](https://doi.org/10.1007/s11135-006-9018-6) [Google Scholar] [Crossref]
37. Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioural research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. [https://doi.org/10.1037/0021-9010.88.5.879](https://doi.org/10.1037/0021-9010.88.5.879) [Google Scholar] [Crossref]
38. Peteraf, M. A. (1993). The cornerstones of competitive advantage: A resource‐based view. Strategic Management Journal, 14(3), 179–191. [https://doi.org/10.1002/smj.4250140303](https://doi.org/10.1002/smj.4250140303) [Google Scholar] [Crossref]
39. Rindskopf, D. M., & Rose, T. L. (1988). Some Theories and Applications of Confirmatory Second-Order Factor Analysis. Multivariate Behavioral Research, 23(1), 51–67. [https://doi.org/10.1207/s15327906mbr2301_3](https://doi.org/10.1207/s15327906mbr2301_3) [Google Scholar] [Crossref]
40. Rousseeuw, P. J., & Van Zomeren, B. C. (1990). Unmasking multivariate outliers and leverage points. Journal of the American Statistical Association, 85(411), 633–639. [https://doi.org/10.1080/01621459.1990.10474920](https://doi.org/10.1080/01621459.1990.1047492) [Google Scholar] [Crossref]
41. Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalised causal inference. Houghton Mifflin. [Google Scholar] [Crossref]
42. Teece, D. J. (2007). Explicating dynamic capabilities: The nature and microfoundations of (sustainable) enterprise performance. Strategic Management Journal, 28(13), 1319–1350. [https://doi.org/10.1002/smj.640](https://doi.org/10.1002/smj.640) [Google Scholar] [Crossref]
43. Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Qi Dong, J., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection and research agenda. Journal of Business Research, 122, 889–901. [https://doi.org/10.1016/j.jbusres.2019.09.022](https://doi.org/10.1016/j.jbusres.2019.09.022) [Google Scholar] [Crossref]
44. Vial, G. (2019). Understanding digital transformation: A review and a research agenda. Information & Management, 57(2), 103225. [https://doi.org/10.1016/j.im.2019.103225](https://doi.org/10.1016/j.im.2019.103225) [Google Scholar] [Crossref]
45. Weick, K. E., & Sutcliffe, K. M. (2015). Managing the unexpected: Sustained performance in a complex world (3rd ed.). Wiley. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- LeafQuest: A Mobile-Based Augmented Reality for Plant Placement, Discovery, and Growth
- Participatory Ergonomic Intervention Approach on Musculoskeletal Disorder (MSD) in Construction Sectors: A Systematic Review
- Integrating GIS into Traffic Incident Management: A Web-Based System
- RideSmart: A Personalized Motorcycle Product Recommendation System Using TF-IDF and Descriptive Analytics for Javidson Motorshop
- Educational Technology Course Design in Pre-Service Teachers Education: A Bibliometric Review of the Research Landscape