Development and Testing of a Real-Time IoT Monitoring System for Aquaponic Farming

Authors

Najwan Khambari

Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka (Malaysia)

Nurul Fakhirah Azlan

Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka (Malaysia)

Nor Azman Mat Ariff

Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka (Malaysia)

Shahkhir Mozamir

Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka (Malaysia)

Norharyati Harum

Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka (Malaysia)

Wahidah Md Shah

Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka (Malaysia)

Bogdan Ghita

School of Engineering, Computing and Mathematics, University of Plymouth (United Kingdom)

Article Information

DOI: 10.47772/IJRISS.2025.91100218

Subject Category: Technology

Volume/Issue: 9/11 | Page No: 2741-2750

Publication Timeline

Submitted: 2025-11-24

Accepted: 2025-11-30

Published: 2025-12-05

Abstract

Aquaponics offers a sustainable approach to agriculture by integrating aquaculture and hydroponics, using fish waste as nutrients for plant growth and plants as natural filters for water recirculation. Despite its ecological advantages, maintaining optimal environmental conditions within aquaponic systems remains a significant challenge due to the need for continuous manual monitoring and adjustment. This study aims to address this issue by developing an Internet of Things (IoT)-based monitoring system to automate and optimize key environmental parameters critical to aquaponic farming, namely water temperature, pH levels, and water levels. The system utilizes an ESP32 microcontroller integrated with cost-effective sensors, a local web interface for data visualization, and a real-time alert mechanism via Telegram messaging. A pilot deployment was conducted, and usability was evaluated through the System Usability Scale (SUS) with 19 aquaponic practitioners. The system achieved a SUS score of 77.11%, indicating a "Good" usability rating. Sensor data was successfully transmitted at two-minute intervals, with real-time alerts triggered when thresholds were exceeded. The results demonstrate that the proposed system is not only technically feasible and user-friendly but also contributes to sustainable agriculture by reducing manual labor and enabling proactive intervention. The study supports the adoption of IoT in small- to medium-scale aquaponic farms, aligning with global efforts toward SDG 2 (Zero Hunger), SDG 6 (Clean Water and Sanitation), and SDG 12 (Responsible Consumption and Production).

Keywords

Aquaponics, ESP32, Internet of Things

Downloads

References

1. K. A. Obirikorang, W. Sekey, B. A. Gyampoh, G. Ashiagbor, and W. Asante, “Aquaponics for Improved Food Security in Africa: A Review,” Front. Sustain. Food Syst., vol. 5, no. August, pp. 1–10, Aug. 2021, doi: 10.3389/fsufs.2021.705549. [Google Scholar] [Crossref]

2. I. Ezzahoui, R. A. Abdelouahid, K. Taji, and A. Marzak, “Hydroponic and Aquaponic Farming: Comparative Study Based on Internet of things IoT technologies.,” Procedia Comput. Sci., vol. 191, pp. 499–504, 2021, doi: 10.1016/j.procs.2021.07.064. [Google Scholar] [Crossref]

3. T. Shafeena, “Smart Aquaponics System: Challenges and Opportunities,” Eur. J. Adv. Eng. Technol., vol. 3, no. 2, pp. 52–55, 2016. [Google Scholar] [Crossref]

4. R. Nalwade and T. Mote, “Hydroponics farming,” in 2017 International Conference on Trends in Electronics and Informatics (ICEI), IEEE, May 2017, pp. 645–650. doi: 10.1109/ICOEI.2017.8300782. [Google Scholar] [Crossref]

5. FAO, “Integrated Aquaculture and Aquaponics,” in Sustainable Food and Agriculture, Elsevier, 2019, pp. 251–257. doi: 10.1016/B978-0-12-812134-4.00028-5. [Google Scholar] [Crossref]

6. T. Y. Kyaw and A. K. Ng, “Smart Aquaponics System for Urban Farming,” Energy Procedia, vol. 143, pp. 342–347, Dec. 2017, doi: 10.1016/j.egypro.2017.12.694. [Google Scholar] [Crossref]

7. L. Beecher, “Aquaponics: System Layout and Components,” in Land-Grant Press by Clemson Extension, 2021. [Online]. Available: https://lgpress.clemson.edu/publication/aquaponics-system-layout-and-components/ [Google Scholar] [Crossref]

8. J. E. Rakocy, “Aquaponics—Integrating Fish and Plant Culture,” in Aquaculture Production Systems, Wiley, 2012, pp. 344–386. doi: 10.1002/9781118250105.ch14. [Google Scholar] [Crossref]

9. A. R. Yanes, P. Martinez, and R. Ahmad, “Towards automated aquaponics: A review on monitoring, IoT, and smart systems,” J. Clean. Prod., vol. 263, p. 121571, Aug. 2020, doi: 10.1016/j.jclepro.2020.121571. [Google Scholar] [Crossref]

10. A. Dutta, P. Dahal, P. Tamang, E. Saban Kumar, and R. Prajapati, “IoT based Aquaponics Monitoring,” 1st KEC Conf. Proc., vol. I, no. September, pp. 75–80, 2018, [Online]. Available: https://www.researchgate.net/publication/327953706 [Google Scholar] [Crossref]

11. M. Alselek, J. M. Alcaraz-Calero, J. Segura-Garcia, and Q. Wang, “Water IoT Monitoring System for Aquaponics Health and Fishery Applications,” Sensors, vol. 22, no. 19, pp. 1–20, 2022, doi: 10.3390/s22197679. [Google Scholar] [Crossref]

12. Muhammad Naufal Mansor et al., “Aquaponic Ecosystem Monitoring with IOT Application,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 31, no. 3, pp. 345–357, Aug. 2023, doi: 10.37934/araset.31.3.345357. [Google Scholar] [Crossref]

13. A. R. Yanes, P. Martinez, and R. Ahmad, “Towards automated aquaponics: A review on monitoring, IoT, and smart systems,” J. Clean. Prod., vol. 263, p. 121571, Aug. 2020, doi: 10.1016/j.jclepro.2020.121571. [Google Scholar] [Crossref]

14. A. K. Jena, P. Biswas, and H. Saha, “Advanced Farming Systems in Aquaculture: Strategies To Enhance the Production,” Innov. Farming, vol. 1, no. 1, pp. 84–89, 2017, [Online]. Available: www.innovativefarming.in [Google Scholar] [Crossref]

15. M. Ula, Muliani, and H. A. K. Aidilof, “Optimization of Water Quality in Shrimp-Shallot Aquaponic Systems: A Machine Learning-Integrated IoT Approach,” Int. J. Intell. Syst. Appl. Eng., vol. 12, no. 1, pp. 480–491, 2024. [Google Scholar] [Crossref]

16. M. A. S. M. Noordin, S. Saon, A. K. Mahamad, and M. Abbas, “Aquaponic Monitoring System and Fish Feeding with Favoriot,” Int. J. Interact. Mob. Technol., vol. 17, no. 12, pp. 132–148, 2023, doi: 10.3991/ijim.v17i12.38485. [Google Scholar] [Crossref]

17. Haryanto, M. Ulum, A. F. Ibadillah, R. Alfita, K. Aji, and R. Rizkyandi, “Smart aquaponic system based Internet of Things (IoT),” J. Phys. Conf. Ser., vol. 1211, no. 1, 2019, doi: 10.1088/1742-6596/1211/1/012047. [Google Scholar] [Crossref]

18. N. M. Stone and H. K. Thomforde, “Understanding your fish pond water analysis report,” 2004. [Online]. Available: http://www.ianrpubs.unl.edu/liveg.pdf [Google Scholar] [Crossref]

19. M. S. T. Abdullah and L. Mazalan, “Smart Automation Aquaponics Monitoring System,” JOIV Int. J. Informatics Vis., vol. 6, no. 1–2, p. 256, May 2022, doi: 10.30630/joiv.6.1-2.925. [Google Scholar] [Crossref]

20. N. Ahmad, M. M. Hasan, M. Rohomun, R. Irin, and R. M. Rahman, “IoT and Computer Vision Based Aquaponics System,” in 2022 IEEE/ACIS 23rd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), IEEE, Dec. 2022, pp. 149–155. doi: 10.1109/SNPD54884.2022.10051814. [Google Scholar] [Crossref]

21. R. K. Kodali and A. C. Sabu, “Aqua Monitoring System using AWS,” in 2022 International Conference on Computer Communication and Informatics (ICCCI), IEEE, Jan. 2022, pp. 1–5. doi: 10.1109/ICCCI54379.2022.9740798. [Google Scholar] [Crossref]

22. S. B. Dhal et al., “An IoT-Based Data-Driven Real-Time Monitoring System for Control of Heavy Metals to Ensure Optimal Lettuce Growth in Hydroponic Set-Ups,” Sensors, vol. 23, no. 1, p. 451, Jan. 2023, doi: 10.3390/s23010451. [Google Scholar] [Crossref]

23. N. C. Azemi et al., “IOT-based intelligent green houses (IGH) using Lo-Ra technology,” Int. J. Innov. Creat. Chang., vol. 9, no. 11, pp. 274–283, 2019. [Google Scholar] [Crossref]

24. S. Wan, K. Zhao, Z. Lu, J. Li, T. Lu, and H. Wang, “A Modularized IoT Monitoring System with Edge-Computing for Aquaponics,” Sensors, vol. 22, no. 23, p. 9260, Nov. 2022, doi: 10.3390/s22239260. [Google Scholar] [Crossref]

25. M. Lowe, R. Qin, and X. Mao, “A Review on Machine Learning, Artificial Intelligence, and Smart Technology in Water Treatment and Monitoring,” Water, vol. 14, no. 9, p. 1384, Apr. 2022, doi: 10.3390/w14091384. [Google Scholar] [Crossref]

26. D. Saraswathi, P. Manibharathy, R. Gokulnath, E. Sureshkumar, and K. Karthikeyan, “Automation of Hydroponics Green House Farming using IOT,” 2018 IEEE Int. Conf. Syst. Comput. Autom. Networking, ICSCA 2018, no. 1997, pp. 1–4, 2018, doi: 10.1109/ICSCAN.2018.8541251. [Google Scholar] [Crossref]

27. T. B. Pramono, N. I. Qothrunnada, F. Asadi, T. W. Cenggoro, and B. Pardamean, “Water quality monitoring system for aquaponic technology using the internet of things (IoT),” Commun. Math. Biol. Neurosci., vol. 2023, pp. 1–18, 2023, doi: 10.28919/cmbn/8221. [Google Scholar] [Crossref]

28. M. N. H. Zainal Alam et al., “Smart Farming Using a Solar Powered Aquaponics System for a Sustainable Food Production,” Malaysian J. Sci., vol. 42, no. 1, pp. 68–77, Feb. 2023, doi: 10.22452/mjs.vol42no1.7. [Google Scholar] [Crossref]

29. A. Reyes Yanes, R. Abbasi, P. Martinez, and R. Ahmad, “Digital Twinning of Hydroponic Grow Beds in Intelligent Aquaponic Systems,” Sensors, vol. 22, no. 19, p. 7393, Sep. 2022, doi: 10.3390/s22197393. [Google Scholar] [Crossref]

30. A. Siddique, J. Sun, K. J. Hou, M. I. Vai, S. H. Pun, and M. A. Iqbal, “SpikoPoniC: A Low-Cost Spiking Neuromorphic Computer for Smart Aquaponics,” Agriculture, vol. 13, no. 11, p. 2057, Oct. 2023, doi: 10.3390/agriculture13112057. [Google Scholar] [Crossref]

31. J. Brooke, “SUS: A ‘Quick and Dirty’ Usability Scale,” in Usability Evaluation In Industry, CRC Press, 1996, pp. 207–212. doi: 10.1201/9781498710411-35. [Google Scholar] [Crossref]

32. N. A. Nik Ahmad and M. Hussaini, “A Usability Testing of a Higher Education Mobile Application Among Postgraduate and Undergraduate Students,” Int. J. Interact. Mob. Technol., vol. 15, no. 09, p. 88, May 2021, doi: 10.3991/ijim.v15i09.19943. [Google Scholar] [Crossref]

33. F. M. Ghabban, M. Hajjar, and S. Alharbi, “Usability Evaluation and User Acceptance of Mobile Applications for Saudi Autistic Children,” Int. J. Interact. Mob. Technol., vol. 15, no. 07, p. 30, Apr. 2021, doi: 10.3991/ijim.v15i07.19881. [Google Scholar] [Crossref]

34. [V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis, “User acceptance of information technology: Toward a unified view,” MIS Quarterly, vol. 27, no. 3, pp. 425–478, 2003. [Google Scholar] [Crossref]

35. United Nations Malaysia, “Malaysia Sustainable Development Goals Voluntary National Review 2021,” 2021. [Online]. Available: https://malaysia.un.org/en/130612-malaysia-sustainable-development-goals-voluntary-national-review-2021 [Google Scholar] [Crossref]

36. World Bank Group, “The Future of Food: Harnessing Digital Technologies to Improve Rural Livelihoods,” 2019. [Online]. Available: https://openknowledge.worldbank.org/handle/10986/31565 [Google Scholar] [Crossref]

37. T. Patil, T. S. Hari, and M. Anitha, “Real-Time Smart Aquarium Monitoring System Driven by IoT,” in Proc. 1st Int. Conf. Sustainable Energy Technol. Comput. Intell. (SETCOM), 2025. [Google Scholar] [Crossref]

38. A. T. Naputol, J. I. Ituriaga, B. M. Yu Jeco-Espaldon, and M. G. Giner, “Development of an IoT-Based Aquaponics Monitoring System with Automated Feeder,” in 2024 IEEE Symp. Industrial Electronics and Applications (ISIEA), 2024. [Google Scholar] [Crossref]

39. S. Kalaivani, N. S. Kurian, T. D. Subha, and K. C. Sai, “IoT Enabled Aquaponics with AI Prospects: Advancing Automated Monitoring and Sustainable Food Production,” in Proc. 6th Int. Conf. Intelligent Communication Technol. Virtual Mobile Netw. (ICICV), 2025. [Google Scholar] [Crossref]

40. J. R. B. Caluag, L. V. D. Cruz, C. F. L. Delfin, and D. R. dela Cruz, “Internet of Things-Based Water Quality Monitoring System for Brackish Water Fishponds,” in Lecture Notes on Data Engineering and Communications Technologies, 2025. [Google Scholar] [Crossref]

41. M. E. Ali, K. Sultan Jasim, and A. Hafeez, “A Smart Monitoring and Observation Framework for Aquaponics Ecosystem,” ARPN J. Eng. Appl. Sci., vol. 19, no. 4, 2024. [Google Scholar] [Crossref]

42. M. Dutta, D. Gupta, S. Tharewal, and J. M. Alanazi, “Internet of Things-Based Smart Precision Farming in Soilless Agriculture: Opportunities and Challenges for Global Food Security,” IEEE Access, vol. 13, 2025. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles