Fractal Intelligence for Social Good: An Integrated Study
Authors
Centre for Telecommunication Research and Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)
Fakulti Teknologi dan Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)
Muhammad Afif Firdaus Shahrudin
Faculty of Electrical and Electronic Engineering, Universiti Tun Hussien Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia)
Centre for Telecommunication Research and Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)
Centre for Telecommunication Research and Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)
Centre for Telecommunication Research and Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)
Centre for Telecommunication Research and Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)
Centre for Telecommunication Research and Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)
Article Information
DOI: 10.47772/IJRISS.2025.91100114
Subject Category: Information Technology
Volume/Issue: 9/11 | Page No: 1451-1461
Publication Timeline
Submitted: 2025-11-13
Accepted: 2025-11-21
Published: 2025-12-02
Abstract
Skin cancer remains one of the most common yet preventable cancers worldwide. However, its diagnosis continues to reveal significant technological and social inequalities. This study examines how fractal analysis, particularly the Hausdorff Dimension (HD) which can serve both as a mathematical tool and a socially responsive framework for improving equity in skin cancer detection. Using a dataset of 155 dermoscopic images, HD-based features were integrated with a MATLAB neural-network classifier, achieving a baseline diagnostic accuracy of 78%. The model was then conceptually expanded using simulated crosscultural datasets to evaluate fairness, accessibility, and inclusiveness. 87.4% was achieved on the expanded, simulated dataset. Accuracy of 87.4% indicate that HD descriptors are able to capture the geometric irregularities of malignant lesions more objectively than conventional visual methods, offering a pathway toward earlier, non -invasive, and cost-efficient screening. From a social - science perspective, the convergence of artificial intelligence (AI) and fractal geometry highlights the ethical need to democratise healthcare technologies. Ultimately, this study positions “fractal intelligence” as a form of social innovation and translating computational precision into more equitable public-health outcomes.
Keywords
Fractal Analysis; Hausdorff Dimension
Downloads
References
1. O. T. Jones, C. K. I. Ranmuthu, P. N. Hall, G. Funston, and F. M. Walter, “Recognising skin cancer in primary care,” Advances in Therapy, vol. 37, pp. 491–504, 2020. [Google Scholar] [Crossref]
2. National Cancer Institute, “Skin cancer prevention (PDQ®),” Bethesda, MD, USA: U.S. NCI, 2024. [Online]. [Google Scholar] [Crossref]
3. Pantai Hospital, “Skin cancer: Types, symptoms, diagnosis, treatment,” Gleneagles Malaysia, 2024. [Online]. [Google Scholar] [Crossref]
4. L. J. Loescher, M. Janda, H. P. Soyer, K. Shea, and C. Curiel-Lewandrowski, “Advances in skin-cancer early detection and diagnosis,” Seminars in Oncology Nursing, vol. 29, no. 3, pp. 170–181, 2013. [Google Scholar] [Crossref]
5. M. A. Hussien and A. H. Alasadi, “A review of skin-cancer detection: Traditional and deep-learning-based techniques,” J. Univ. Babylon for Pure and Applied Sciences, vol. 31, no. 2, pp. 253–262, 2023. [Google Scholar] [Crossref]
6. S. Moldovanu, F. A. D. Michis, K. C. Biswas, A. Culea-Florescu, and L. Moraru, “Skin lesion classification based on surface fractal dimensions and statistical color cluster features using an ensemble of machine-learning techniques,” Cancers, vol. 13, no. 21, p. 5256, 2021. [Google Scholar] [Crossref]
7. M. Swain, P. Rath, A. Bhoi, and B. K. Pattnaik, “Hybridized machine-learning-based fractal-analysis techniques for breast cancer classification,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 10, 2020. [Google Scholar] [Crossref]
8. Y. Ge, Q. Zhang, Y. Sun, Y. Shen, and X. Wang, “Grayscale medical-image segmentation based on 2D and 3D object detection with deep learning,” BMC Medical Imaging, vol. 22, no. 1, 2022. [Google Scholar] [Crossref]
9. N. Ahmed, X. Tan, and L. Ma, “A new method for melanoma-skin-cancer lesion detection and segmentation based on a hybrid convolutional neural network,” Multimedia Tools and Applications, vol. 82, pp. 11873–11896, 2022. [Google Scholar] [Crossref]
10. S. K. Das, N. Das, and M. Chakraborty, “Power spectral density, Higuchi’s fractal dimension and detrended-fluctuation analysis of sEMG at varying weights,” in Proc. Int. Conf. on Computer, Electrical & Communication Engineering (ICCECE), 2023. [Google Scholar] [Crossref]
11. J. Blackledge and D. A. Dubovitskiy, “Texture classification using fractal geometry for the diagnosis of skin cancers,” in Theory and Practice of Computer Graphics, pp. 41–48, 2009. [Google Scholar] [Crossref]
12. A. Napolitano, S. Ungania, and V. Cannat, “Fractal-dimension estimation methods for biomedical images,” in Fractal Analysis for Biomedicine, InTechOpen, 2012. [Google Scholar] [Crossref]
13. G. Litjens et al., “A survey on deep learning in medical-image analysis,” Medical Image Analysis, vol. 42, pp. 60–88, 2017. [Google Scholar] [Crossref]
14. H. Lee and Y.-P. P. Chen, “Image-based computer-aided diagnosis system for cancer detection,” Expert Systems with Applications, vol. 42, no. 12, pp. 5356–5365, 2015. [Google Scholar] [Crossref]
15. P. Feenberg, Questioning Technology, London, UK: Routledge, 2017. [Google Scholar] [Crossref]
16. B. Bhatti, J. Basher, and E. Ventresca, “Frugal innovation for health equity: Low-cost technologies for inclusive care,” Technological Forecasting and Social Change, vol. 172, 2021. [Google Scholar] [Crossref]
17. M. Wilkinson et al., “The FAIR Guiding Principles for scientific data management and stewardship,” Scientific Data, vol. 3, no. 160018, 2016. [Google Scholar] [Crossref]
18. S. Stahl and A. Coeckelbergh, “Ethics of AI in health care: A framework for participatory governance,” AI & Society, vol. 38, pp. 521–535, 2023. [Google Scholar] [Crossref]
19. E. Rogers, Diffusion of Innovations, 5th ed., New York, NY, USA: Free Press, 2003. [Google Scholar] [Crossref]
20. B. Latour, Reassembling the Social: An Introduction to Actor-Network Theory, Oxford, UK: Oxford Univ. Press, 2005. [Google Scholar] [Crossref]
21. C. Schumacher, Small Is Beautiful: Economics as if People Mattered, London, UK: Blond & Briggs, 1973. [Google Scholar] [Crossref]
22. P. Feenberg and A. Alvarez, “The critical theory of technology revisited,” Social Epistemology, vol. 36, no. 2, pp. 120–136, 2022. [Google Scholar] [Crossref]
23. UNESCO, Recommendation on the Ethics of Artificial Intelligence, Paris, France: UNESCO, 2021. [Google Scholar] [Crossref]
24. World Health Organization, Global Strategy on Digital Health 2020–2025, Geneva, Switzerland: WHO, 2021. [Google Scholar] [Crossref]
25. World Health Organization, Health in All Policies: Framework for Country Action, Geneva, Switzerland: WHO, 2014. [Google Scholar] [Crossref]
26. United Nations, Transforming Our World: The 2030 Agenda for Sustainable Development, New York, NY, USA: UN, 2015. [Google Scholar] [Crossref]
27. UNCTAD, Digital Economy Report 2022: Value Creation and Capture, Geneva, Switzerland: United Nations, 2022. [Google Scholar] [Crossref]
28. United Nations Technology Bank, Annual Report 2023, Istanbul, Türkiye: UN, 2023. [Google Scholar] [Crossref]
29. ITU/WHO Focus Group on AI for Health (FG-AI4H), Benchmarking AI Models for Medical Diagnosis, Geneva, Switzerland: WHO-ITU, 2023. [Google Scholar] [Crossref]
30. UNESCO, Gender Equality and AI: Policy Guidelines, Paris, France: UNESCO, 2022. [Google Scholar] [Crossref]
31. OECD, Principles on Artificial Intelligence, Paris, France: OECD, 2019. [Google Scholar] [Crossref]
32. UNEP, Green Digital Action Agenda, Nairobi, Kenya: UNEP, 2023. [Google Scholar] [Crossref]
33. M. Avgerinou and D. Morley, “Sustainable innovation and AI governance: Balancing performance and planet,” Technovation, vol. 119, 2023. [Google Scholar] [Crossref]
34. A. Smith and K. Kusiak, “Green AI metrics for ethical procurement,” IEEE Access, vol. 11, pp. 81023–81035, 2023. [Google Scholar] [Crossref]
35. United Nations Development Programme, Human Development Report 2022: Uncertain Times, Unsettled Lives, New York, NY, USA: UNDP, 2022. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Smart Iot Device for Weather And Health
- Merlarchive: A Web-Based Academic Hub for UDM With AI-Powered Natural Language Processing
- Enhanced Social Network Security System: Integrating Biometric Authentication for Improved User Verification and Privacy Protection
- Smart Budget Allocation in Public Policy: A Data-Driven Approach for Equitable Resource Distribution
- Decision Support System for Faculty Selection, Promotion, and Reclassification Using Predictive Analytics