Multi-Modal Biometric Authentication System Using Score Fusion Techniques
Authors
Center for Advanced Computing Technology (C-ACT),Fakulti Teknologi Maklumat dan Komunikasi (FTMK), University Technical Malaysia Melaka (Malaysia)
Eboss Group Holdings, Kuala Lumpur, Malaysia (Malaysia)
Center for Advanced Computing Technology (C-ACT),Fakulti Teknologi Maklumat dan Komunikasi (FTMK), University Technical Malaysia Melaka (Malaysia)
Center for Advanced Computing Technology (C-ACT),Fakulti Teknologi Maklumat dan Komunikasi (FTMK), University Technical Malaysia Melaka (Malaysia)
Center for Advanced Computing Technology (C-ACT),Fakulti Teknologi Maklumat dan Komunikasi (FTMK), University Technical Malaysia Melaka (Malaysia)
Article Information
DOI: 10.47772/IJRISS.2025.91100278
Subject Category: Computer Science
Volume/Issue: 9/11 | Page No: 3507-3514
Publication Timeline
Submitted: 2025-11-10
Accepted: 2025-11-20
Published: 2025-12-06
Abstract
Biometric as an advanced access control method, however, the security can be enhanced through combination of more than one biometric element into one system. This study investigates the enhancement of security in access control systems by implementing a multi-modal biometric authentication system. It explores three biometric combinations: face and fingerprint, face and iris, and fingerprint and iris by using datasets from the CASIA database. The methodology includes biometric image preprocessing, feature extraction using DeepFace (for face), minutiae points (for fingerprints), and Gabor filters (for iris), followed by score-level fusion using weighted average techniques. Experimental analysis reveals that the face-fingerprint combination achieves the highest accuracy of 90.8%, followed by face-iris at 88.8%, outperforming unimodal systems. These results demonstrate the advantage of combining biometric traits for a more reliable and secure authentication system, contributing to the advancement of biometric security technologies.
Keywords
Biometrics; Multi-modal Authentication; Score Fusion; Face Recognition
Downloads
References
1. Abdul-Al, M., Kyeremeh, G. K., Parchin, N. O., Abd-Alhameed, R. A., Qahwaji, R., & Rodriguez, J. (2021, October). Performance of multimodal biometric systems using face and fingerprints (short survey). In 2021 IEEE 26th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD) (pp. 1-6). IEEE. [Google Scholar] [Crossref]
2. Alay, N., & Al-Baity, H. H. (2020). Deep learning approach for multimodal biometric recognition system based on fusion of iris, face, and finger vein traits. Sensors, 20(19), 5523.. [Google Scholar] [Crossref]
3. Ammour, B., Boubchir, L., Bouden, T., & Ramdani, M. (2020). Face–iris multimodal biometric identification system. Electronics, 9(1), 85. [Google Scholar] [Crossref]
4. Antil, A., & Dhiman, C. (2025). Unmasking Deception: A Comprehensive Survey on the Evolution of Face Anti‐spoofing Methods. Neurocomputing, 617, 128992. [Google Scholar] [Crossref]
5. Bansal, T., & Dhir, E. M. K. (2015). Analysis of Uni-Modal & Multimodal Biometric System using Iris & Fingerprint. International Journal of Advanced Research in Computer Science, 6(7). [Google Scholar] [Crossref]
6. Benaliouche, H., & Touahria, M. (2014). Comparative study of multimodal biometric recognition by fusion of iris and fingerprint. The Scientific World Journal, 2014(1), 829369.Center for Biometrics and Security Research. http://www.cbsr.ia.ac.cn/IrisDatabase.htm [Google Scholar] [Crossref]
7. Chandran, G. C., & Rajesh, R. S. (2009). Performance analysis of multimodal biometric system authentication. Int. J. Comput. Sci. Network Security, 9(3). [Google Scholar] [Crossref]
8. Damer, N., Opel, A., & Nouak, A. (2014, September). Biometric source weighting in multi-biometric fusion: Towards a generalized and robust solution. In 2014 22nd European Signal Processing Conference (EUSIPCO) (pp. 1382-1386). IEEE. [Google Scholar] [Crossref]
9. Dewantara, B. S. B., Firmansyah, M. R., Sari, D. M., Harsono, T., & Aqil, P. R. (2022, November). Door Lock Access Control using Fusion of Face and Fingerprint Recognition. In 2022 IEEE Creative Communication and Innovative Technology (ICCIT) (pp. 1-6). IEEE. [Google Scholar] [Crossref]
10. Gavisiddappa, G., Mahadevappa, S., & Patil, C. (2020). Multimodal biometric authentication system using modified ReliefF feature selection and multi support vector machine. International Journal of Intelligent Engineering and Systems, 13(1), 1-12. [Google Scholar] [Crossref]
11. Gizachew Yirga, T., Gizachew Yirga, H., & Addisu, E. G. (2025). Cryptographic key generation using deep learning with biometric face and finger vein data. Frontiers in Artificial Intelligence, 8, 1545946. [Google Scholar] [Crossref]
12. Gunasekaran, K., Raja, J., & Pitchai, R. (2019). Deep multimodal biometric recognition using contourlet derivative weighted rank fusion with human face, fingerprint and iris images. Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije, 60(3), 253-265.. [Google Scholar] [Crossref]
13. Hattab, A., & Behloul, A. (2024). Face-Iris multimodal biometric recognition system based on deep learning. Multimedia Tools and Applications, 83(14), 43349-43376.. [Google Scholar] [Crossref]
14. He, M., Horng, S. J., Fan, P., Run, R. S., Chen, R. J., Lai, J. L., ... & Sentosa, K. O. (2010). Performance evaluation of score level fusion in multimodal biometric systems. Pattern Recognition, 43(5), 1789-1800. [Google Scholar] [Crossref]
15. Hong, Y. (2021). Performance evaluation metrics for biometrics-based authentication systems (Doctoral dissertation). [Google Scholar] [Crossref]
16. Jain, A., Nandakumar, K., & Ross, A. (2005). Score normalization in multimodal biometric systems. Pattern recognition, 38(12), 2270-2285. [Google Scholar] [Crossref]
17. Kim, Y. G., Shin, K. Y., Lee, E. C., & Park, K. R. (2012). Multimodal biometric system based on the recognition of face and both irises. International Journal of Advanced Robotic Systems, 9(3), 65.. [Google Scholar] [Crossref]
18. Manju, R., & Rajendran, A. (2012). Performance analysis of multimodal biometric based authentication system. Int J Eng Res Technol, 1(7). [Google Scholar] [Crossref]
19. Pahuja, S., & Goel, N. (2024). Multimodal biometric authentication: A review. AI Communications, 37(4), 525-547. [Google Scholar] [Crossref]
20. Pandya, B., & Bharadi, V. (2013). Multimodal Fusion of Fingerprint & Iris using Hybrid wavelet based feature vector. In 4th International Conference & Workshop on Advanced Computing, ICWAC. [Google Scholar] [Crossref]
21. Radha, N., & Kavitha, A. (2012). Rank level fusion using fingerprint and iris biometrics. Indian Journal of Computer Science and Engineering, 2(6), 917-923..Robertvazan. https://github.com/robertvazan/fingerprint-datasets?tab=readme-ov-file#casia-fingerprintv5. [Google Scholar] [Crossref]
22. Ross, A., & Jain, A. (2003). Information fusion in biometrics. Pattern recognition letters, 24(13), 2115-2125. [Google Scholar] [Crossref]
23. Talreja, V., Valenti, M. C., & Nasrabadi, N. M. (2020). Deep hashing for secure multimodal biometrics. IEEE Transactions on Information Forensics and Security, 16, 1306-1321.. [Google Scholar] [Crossref]
24. Terfa, A., James, A., & Sever, K. (2021). Multi-modal biometrics systems: Concepts, strengths, challenges and solutions. International Journal, 10(3).. [Google Scholar] [Crossref]
25. Vekariya, V., Joshi, M., & Dikshit, S. (2024). Multi-biometric fusion for enhanced human authentication in information security. Measurement: Sensors, 31, 100973.. [Google Scholar] [Crossref]
26. Wang, Z., Yang, J., Wang, E., Liu, Y., & Ding, Q. (2012). A novel multimodal biometric system based on iris and face. International Journal of Digital Content Technology and its Applications, 6(2), 111-118.. [Google Scholar] [Crossref]
27. Yang, Yang (2024). CASIA-FaceV5.zip. figshare. Dataset. https://doi.org/10.6084/m9.figshare.26509591.v1. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- What the Desert Fathers Teach Data Scientists: Ancient Ascetic Principles for Ethical Machine-Learning Practice
- Comparative Analysis of Some Machine Learning Algorithms for the Classification of Ransomware
- Comparative Performance Analysis of Some Priority Queue Variants in Dijkstra’s Algorithm
- Transfer Learning in Detecting E-Assessment Malpractice from a Proctored Video Recordings.
- Dual-Modal Detection of Parkinson’s Disease: A Clinical Framework and Deep Learning Approach Using NeuroParkNet