Reframing “Technological Due Process” For Tax: Adapting Administrative Law Principles to Ai-Driven Audits, Automated Assessments, and Risk Scoring
Authors
Getcorp Payroll Accounting (America (USA))
Article Information
DOI: 10.47772/IJRISS.2025.91200070
Subject Category: Social science
Volume/Issue: 9/12 | Page No: 881-895
Publication Timeline
Submitted: 2025-12-10
Accepted: 2025-12-19
Published: 2025-12-31
Abstract
The digital transformation of tax administration is fundamentally altering the exercise of governmental taxing authority. Rather than reviewing tax returns retrospectively, revenue authorities are increasingly monitoring taxpayers in real time through data sharing, embedded regulatory rules, and algorithmic surveillance. As the IRS advances toward “Tax Administration 3.0,” supported by increased funding and artificial intelligence tools, procedural protections developed in the twentieth century are becoming increasingly inadequate.
Keywords
Technological Due Process; Tax Administration; Algorithmic Audit Selection
Downloads
References
1. Appelman, N., Fahy, R., & Hoboken, J. V. (2021). Social Welfare, Risk Profiling and Fundamental Rights: The Case of SyRI in the Netherlands. JIPITEC, 12. https://www.ivir.nl/publications/social-welfare-risk-profiling-and-fundamental-rights-the-case-of-syri-in-the-netherlands/ [Google Scholar] [Crossref]
2. Barocas, S., Selbst, A. D., & Raghavan, M. (2019). The Hidden Assumptions Behind Counterfactual Explanations and Principal Reasons. arXiv. https://arxiv.org/abs/1912.04930 [Google Scholar] [Crossref]
3. Battaglini, M., Guiso, L., Lacava, C., Miller, D. L., & Patacchini, E. (2024). Refining public policies with machine learning: The case of tax auditing. Journal of Econometrics, 249, 105847. https://doi.org/10.1016/j.jeconom.2024.105847 [Google Scholar] [Crossref]
4. Black, E., Elzayn, H., Chouldechova, A., Goldin, J., & Ho, D. (2022). Algorithmic Fairness and Vertical Equity: Income Fairness with IRS Tax Audit Models. 2022 ACM Conference on Fairness, Accountability, and Transparency, 1479–1503. https://doi.org/10.1145/3531146.3533204 [Google Scholar] [Crossref]
5. Blank, J. D., & Glogower, A. (2021). The trouble with targeting tax shelters. Administrative Law Review. https://ssrn.com/abstract=3937450 [Google Scholar] [Crossref]
6. Caliendo, P. (2025). Algorithmic Tax Power and Constitutional Safeguards: Global Perspectives on AI, bias, and Digital Tax justice. Beijing Law Review, 16(03), 1861–1879. https://doi.org/10.4236/blr.2025.163094 [Google Scholar] [Crossref]
7. Calijuri, M. S. (2023). Revolutionizing Taxation: Tax Administration 3.0 is already here. Review of International and European Economic Law, 2(4), A4.1-A4.14. https://rieel.com/index.php/rieel/article/view/78 [Google Scholar] [Crossref]
8. Calo, R., & Citron, D. K. (2020). The Automated Administrative State: A Crisis of Legitimacy. Emory Law Journal, 70. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3553590 [Google Scholar] [Crossref]
9. Camp, B. T. (2023). Collective due process in tax administration. Pittsburgh Tax Review, 20(1). https://doi.org/10.5195/taxreview.2022.178 [Google Scholar] [Crossref]
10. Chan, T., Tan, C., & Tagkopoulos, I. (2022). Audit lead selection and yield prediction from historical tax data using artificial neural networks. PLoS ONE, 17(11), e0278121. https://doi.org/10.1371/journal.pone.0278121 [Google Scholar] [Crossref]
11. Chesterman, S. (2021). Through a glass, darkly: Artificial intelligence and the problem of opacity. The American Journal of Comparative Law, 69(2), 271–294. https://doi.org/10.1093/ajcl/avab012 [Google Scholar] [Crossref]
12. Christoph, M. (2023). Criminal Justice Technology and the Regulatory Sandbox: Toward balancing justice, accountability, and innovation. University of Pittsburgh Law Review, 84(4). https://doi.org/10.5195/lawreview.2023.959 [Google Scholar] [Crossref]
13. Citron, D. K. (2007). Technological due process. Washington University Law Review, 85(6), 1249–1313. https://digitalcommons.law.umaryland.edu/fac_pubs/406 [Google Scholar] [Crossref]
14. Coglianese, C. (2021). Administrative law in the automated state. Daedalus, 150(3), 104–120. https://doi.org/10.1162/daed_a_01862 [Google Scholar] [Crossref]
15. Cords, D. W. (2021). Nina E. Olson: A Legislative legacy. Pittsburgh Tax Review, 18(1). https://doi.org/10.5195/taxreview.2020.126 [Google Scholar] [Crossref]
16. Daly, S. (2024). Artificial Intelligence, the Rule of Law and Public Administration: The Case of Taxation. The Cambridge Law Journal, 83(3), 437–464. https://doi.org/10.1017/s0008197324000448 [Google Scholar] [Crossref]
17. Daubert v. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579 (1993) [Google Scholar] [Crossref]
18. Elzayn, H., Smith, E., Hertz, T., Guage, C., Ramesh, A., Fisher, R., Ho, D. E., & Goldin, J. (2024). Measuring and mitigating racial disparities in tax audits. The Quarterly Journal of Economics, 140(1), 113–163. https://doi.org/10.1093/qje/qjae027 [Google Scholar] [Crossref]
19. Fogg, K. (2023). Revisiting the ten deadly sins created in the IRS Restructuring and Reform Act. Pittsburgh Tax Review, 20(1). https://doi.org/10.5195/taxreview.2022.176 [Google Scholar] [Crossref]
20. Fresz, B., Dubovitskaya, E., Brajovic, D., Huber, M., & Horz, C. (2024). How should AI decisions be explained? Requirements for Explanations from the Perspective of European Law. arXiv. https://doi.org/10.48550/arxiv.2404.12762 [Google Scholar] [Crossref]
21. Gans, J., Logan, P., & Piper, M. A. (2025). IRS Audits and the Emerging Role of AI in Enforcement. Holland & Knight Insights. https://www.hklaw.com/en/insights/publications/2025/11/irs-audits-and-the-emerging-role-of-ai-in-enforcement [Google Scholar] [Crossref]
22. Górski, Ł., Kuźniacki, B., Almada, M., Tyliński, K., Calvo, M., Asnaghi, P. M., Almada, L., Iñiguez, H., Rubianes, F., Pera, O., & Nigrelli, J. I. (2024). Exploring explainable AI in the tax domain. Artificial Intelligence and Law, 33(3), 551–579. https://doi.org/10.1007/s10506-024-09395-w [Google Scholar] [Crossref]
23. Grant, D. G., Behrends, J., & Basl, J. (2023). What we owe to decision-subjects: beyond transparency and explanation in automated decision-making. Philosophical Studies, 182(1), 55–85. https://doi.org/10.1007/s11098-023-02013-6 [Google Scholar] [Crossref]
24. Greenstein, S. (2021). Preserving the rule of law in the era of artificial intelligence (AI). Artificial Intelligence and Law, 30(3), 291–323. https://doi.org/10.1007/s10506-021-09294-4 [Google Scholar] [Crossref]
25. Guglyuvatyy, E. (2025). Balancing innovation and integrity: AI in tax administration and taxpayer rights. Humanities and Social Sciences Communications, 12(1). https://doi.org/10.1057/s41599-025-06099-7 [Google Scholar] [Crossref]
26. Guyton, J., Leibel, K., Manoli, D., Patel, A., Payne, M., & Schafer, B. (2018). The effects of EITC Correspondence Audits on Low-Income Earners. NBER Working Paper No. 24465. https://doi.org/10.3386/w24465 [Google Scholar] [Crossref]
27. Heckler v. Chaney, 470 U.S. 821 (1985) [Google Scholar] [Crossref]
28. Henderson, P., Chugg, B., Anderson, B., Altenburger, K., Turk, A., Guyton, J., Goldin, J., & Ho, D. E. (2023). Integrating reward maximization and population estimation: Sequential Decision-Making for Internal Revenue Service Audit selection. Proceedings of the AAAI Conference on Artificial Intelligence, 37(4), 5087–5095. https://doi.org/10.1609/aaai.v37i4.25637 [Google Scholar] [Crossref]
29. Hossain, N. I., Ahmad, N. R., Amin, N. M. R., Sultana, N. N., & Chowdhury, N. S. (2025). Risk assessment in financial services: Advancing transparency and trust through explainable AI models. International Journal of Science and Research Archive, 16(1), 1409–1419. https://doi.org/10.30574/ijsra.2025.16.1.2150 [Google Scholar] [Crossref]
30. Inflation Reduction Act of 2022, Pub. L. No. 117-169, 136 Stat. 1818. [Google Scholar] [Crossref]
31. Internal Revenue Manual (IRM) § 4.1. [Google Scholar] [Crossref]
32. Internal Revenue Service, Strategic Operating Plan FY 2023-2031. [Google Scholar] [Crossref]
33. Johnson, S. R. (2015). Reasoned explanation and IRS adjudication. Duke Law Journal, 63(8). https://scholarship.law.duke.edu/dlj/vol63/iss8/5 [Google Scholar] [Crossref]
34. Kesari, A., Sele, D., Ash, E., & Bechtold, S. (2025, May 6). Explaining eXplainable AI. SSRN. https://doi.org/10.2139/ssrn.4972085 [Google Scholar] [Crossref]
35. Kuzniacki, B., Almada, M., Tyliński, K., & Górski, Ł. (2022). Requirements for tax XAI under constitutional principles and human rights. In Lecture notes in computer science (pp. 221–238). https://doi.org/10.1007/978-3-031-15565-9_14 [Google Scholar] [Crossref]
36. Lipman, F. J. (2021). Humanizing the tax system: What national taxpayer advocate Nina E. Olson did for America’s kids and their families. Pittsburgh Tax Review, 18(1). https://doi.org/10.5195/taxreview.2020.121 [Google Scholar] [Crossref]
37. Maria Amparo Grau Ruiz, Fiscal Transformations Due to AI and Robotization: Where Do Recent Changes in Tax Administrations, Procedures and Legal Systems Lead Us?, 19 Nw. J. Tech. & Intell. Prop. 325. https://scholarlycommons.law.northwestern.edu/njtip/vol19/iss4/1 [Google Scholar] [Crossref]
38. Mathews v. Eldridge, 424 U.S. 319 (1976) [Google Scholar] [Crossref]
39. Mayson, S. G. (2019, June). “Bias in, bias out.” Yale Law Journal, 128, 2218–2300. [Google Scholar] [Crossref]
40. Mei, Y., & Broyde, M. J. (2025). Reclaiming constitutional authority of algorithmic power. arXiv. https://doi.org/10.48550/arxiv.2508.11699 [Google Scholar] [Crossref]
41. Miller, K. (2023, January 31). IRS disproportionately audits Black taxpayers. Stanford Law School. https://law.stanford.edu/press/irs-disproportionately-audits-black-taxpayers/ [Google Scholar] [Crossref]
42. Motor Vehicle Mfrs. Ass'n v. State Farm Mut. Auto. Ins. Co., 463 U.S. 29 (1983) [Google Scholar] [Crossref]
43. Mullane v. Central Hanover Bank & Trust Co., 339 U.S. 306 (1950) [Google Scholar] [Crossref]
44. OECD. (2020). Tax Administration 3.0: The Digital Transformation of Tax Administration. OECD. https://doi.org/10.1787/ca274cc5-en [Google Scholar] [Crossref]
45. OECD. (2023). AI in tax administration: Governing with Artificial Intelligence. OECD. https://www.oecd.org/en/publications/governing-with-artificial-intelligence_795de142-en/full-report/ai-in-tax-administration_30724e43.html [Google Scholar] [Crossref]
46. OECD. (2023). Tax Administration 2023: Comparative Information on OECD and Other Advanced and Emerging Economies. OECD. https://www.oecd.org/content/dam/oecd/en/publications/reports/2023/09/tax-administration-2023_87655bc9/900b6382-en.pdf [Google Scholar] [Crossref]
47. Office of Management and Budget. (2024). Advancing governance, innovation, and risk management for agency use of artificial intelligence (Memo M-24-10). Executive Office of the President. [Google Scholar] [Crossref]
48. Olson, N. E. (2012). What’s an Audit, Anyway? Taxpayer Advocate Service. https://www.taxpayeradvocate.irs.gov/news/nta-blog/ntablog-whats-an-audit-anyway/2012/01/ [Google Scholar] [Crossref]
49. Olson, N. E. (2012, April 19). Written statement of Nina E. Olson, National Taxpayer Advocate... U.S. House of Representatives. https://www.taxpayeradvocate.irs.gov/wp-content/uploads/2020/09/testimony_house_oversight_comm_4-19-2012.pdf [Google Scholar] [Crossref]
50. Papis-Almansa, M. (2022). The use of new technologies in VAT and taxpayers’ rights. In CJEU: Recent developments in value added tax 2021. Linde. https://ssrn.com/abstract=4034858 [Google Scholar] [Crossref]
51. Regulation (EU) 2016/679 (GDPR), Arts. 13-15, 22. [Google Scholar] [Crossref]
52. Ruz, C. (2025, October 27). Systems integration in Tax Administration 3.0 - Part 3. CIAT. https://www.ciat.org/systems-integration-in-tax-administration-3-0/?lang=en [Google Scholar] [Crossref]
53. Shaikh, S. (2025). Balancing Innovation and oversight: AI in the U.S. Treasury and IRS: a survey. arXiv. https://doi.org/10.48550/arxiv.2509.16294 [Google Scholar] [Crossref]
54. Siva, P. K. (2025). Legal and regulatory implications of Agentic AI in tax administration. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5333340 [Google Scholar] [Crossref]
55. Song, Y., Wang, Z., Li, N., & Hongji, X. (2025). A Hybrid DNN-Transformer-AE Framework for Corporate Tax Risk Supervision and Risk Level Assessment. Economics of Management and Innovation. https://www.gbspress.com/index.php/EMI/article/view/456 [Google Scholar] [Crossref]
56. SyRI Judgment, District Court of The Hague (C/09/550982 / HA ZA 18-541), Feb. 5, 2020. [Google Scholar] [Crossref]
57. United States v. Armstrong, 517 U.S. 456 (1996). [Google Scholar] [Crossref]
58. Usen, C. D. (2025). Analyzing behavioral economics in enhancing voluntary tax compliance in the us among self-employed informal sector workers. World Journal of Advanced Research and Reviews, 26(3), 366–384. https://doi.org/10.30574/wjarr.2025.26.3.2226 [Google Scholar] [Crossref]
59. Usen, C. D. (2025). From Hess to O’Donnabhain: The divergence of Business utility and medical necessity in Somatic Tax Law. International Journal of Research Publication and Reviews, 6(11), 10014–10020. https://doi.org/10.55248/gengpi.06.1125.4024 [Google Scholar] [Crossref]
60. Von Ungern-Sternberg, A. (2022). Discriminatory AI and the law. In Cambridge University Press eBooks (pp. 252–278). https://doi.org/10.1017/9781009207898.020 [Google Scholar] [Crossref]
61. Vredenburgh, K. (2021). The right to explanation. Journal of Political Philosophy, 30(2), 209–229. https://doi.org/10.1111/jopp.12262 [Google Scholar] [Crossref]
62. Wachter, S., Mittelstadt, B., & Floridi, L. (2017). Why a Right to Explanation of Automated Decision-Making Does Not Exist in the General Data Protection Regulation. International Data Privacy Law, 7(2), 76–99. https://academic.oup.com/idpl/article/7/2/76/3860948 [Google Scholar] [Crossref]
63. Wachter, S., Mittelstadt, B., & Russell, C. (2017). Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harvard Journal of Law & Technology, 31, 841. https://doi.org/10.2139/ssrn.3063289 [Google Scholar] [Crossref]
64. World Bank. (2019). Behavioral insights for tax compliance. World Bank. https://doi.org/10.1596/33046 [Google Scholar] [Crossref]
65. Yismaw, A., Johns, A., Hussain, I., Creem, E., & Risler, M. (2021). Enhancing Return Risk Assessment for Examination: Recent DIF (Discriminant Function) Model Updates. IRS Research Bulletin. https://www.irs.gov/pub/irs-prior/p1500--2022.pdf [Google Scholar] [Crossref]
66. Zalcewicz, A. (2023). New technologies in the control of public finances and building public confidence in the state. Białostockie Studia Prawnicze, 28(2), 23–35. https://doi.org/10.15290/bsp.2023.28.02.02 [Google Scholar] [Crossref]
67. Zheng, S., & Penetrante, M. O. (2025). Design and analysis of an AI-Driven Tax Avoidance Detection System in big data environments for public sector tax administration. International Journal of Research and Innovation in Social Science, IX(V), 3118–3130. https://doi.org/10.47772/ijriss.2025.905000241 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- The Impact of Ownership Structure on Dividend Payout Policy of Listed Plantation Companies in Sri Lanka
- Urban Sustainability in North-East India: A Study through the lens of NER-SDG index
- Performance Assessment of Predictive Forecasting Techniques for Enhancing Hospital Supply Chain Efficiency in Healthcare Logistics
- The Fractured Self in Julian Barnes' Postmodern Fiction: Identity Crisis and Deflation in Metroland and the Sense of an Ending
- Impact of Flood on the Employment, Labour Productivity and Migration of Agricultural Labour in North Bihar