Simulation-Based Guided Inquiry Learning Packet on Gene Expression: Its Effect to Metacognitive Awareness

Authors

Peter T. Sultan

Department of Science and Mathematics Education, College of Education, Mindanao State University – Iligan Institute of Technology, Bonifacio Ave. Tibanga, Iligan City, 9200 (Philippines)

Sotero O. Malayao, Jr.

Department of Science and Mathematics Education, College of Education, Mindanao State University – Iligan Institute of Technology, Bonifacio Ave. Tibanga, Iligan City, 9200 (Philippines)

Monera A. Salic-Hairulla

Department of Science and Mathematics Education, College of Education, Mindanao State University – Iligan Institute of Technology, Bonifacio Ave. Tibanga, Iligan City, 9200 (Philippines)

Joy R. Magsayo

Department of Science and Mathematics Education, College of Education, Mindanao State University – Iligan Institute of Technology, Bonifacio Ave. Tibanga, Iligan City, 9200 (Philippines)

Joy Bagaloyos

Department of Science and Mathematics Education, College of Education, Mindanao State University – Iligan Institute of Technology, Bonifacio Ave. Tibanga, Iligan City, 9200 (Philippines)

Eddie Mondejar

Department of Science and Mathematics Education, College of Education, Mindanao State University – Iligan Institute of Technology, Bonifacio Ave. Tibanga, Iligan City, 9200 (Philippines)

Article Information

DOI: 10.47772/IJRISS.2025.914MG00252

Subject Category: Education

Volume/Issue: 9/14 | Page No: 3283-3301

Publication Timeline

Submitted: 2025-12-01

Accepted: 2025-12-08

Published: 2026-01-03

Abstract

This study developed and implemented a Simulation-Based Guided Inquiry Learning Packet on Gene Expression to determine its effectiveness in improving students’ academic performance and metacognitive awareness. Utilizing a mixed-method research design, quantitative data were gathered through pretest and posttest achievement scores, while qualitative insights were obtained from perception surveys and content evaluation. The Successive Approximation Model (SAM) guided the development process to ensure continuous refinement and alignment to learning outcomes. The learning packet integrated PhET simulations with guided-inquiry tasks, preceded by bioinformatics activities using MEGA and BioEdit software to establish a foundational understanding. Content validation by four science experts resulted in a Very Satisfactory rating across criteria, confirming the instructional soundness of the material.
The intervention was administered to BSED Science I students in a public university. Results showed a significant increase in conceptual understanding, reflected in the overall normalized gain score of 0.74, interpreted as high, with no students falling below moderate gain. Recurring misconceptions were identified, particularly in items requiring deeper conceptual reasoning, indicating areas needing further instructional reinforcement. Findings from the Metacognitive Awareness Inventory and perception feedback revealed improvements in students’ monitoring, planning, and self-regulation, alongside heightened engagement and motivation in learning gene expression.
The study concludes that simulation-based guided inquiry is effective in enhancing learning outcomes and metacognitive skills in genetics. The developed material is recommended for instructional integration and further application across related biology concepts to strengthen conceptual mastery and reflective learning.

Keywords

Gene expression; Guided inquiry

Downloads

References

1. Adarlo, G., & Jackson, L. (2017). For whom is K-12 education: A critical look into twenty-first-century educational policy and curriculum in the Philippines. Educating for the 21st Century, 207- 223. Springer, Singapore https://doi.org/10.1007/978-981-10-1673-8_11 [Google Scholar] [Crossref]

2. Akpınar, Ercan. (2014). The Use of Interactive Computer Animations Based on POE as a Presentation Tool in Primary Science Teaching. Journal of Science Education and Technology. 23. 10.1007/s10956-013-9482-4. [Google Scholar] [Crossref]

3. Alinsunurin, J. P. (2021). Unpacking Underperformance: Learning Mindsets and the Challenge of Academic Achievement Among Filipino Students. Social Science Research Network. https://doi.org/10.2139/SSRN.3867956 [Google Scholar] [Crossref]

4. Angelini, M.L. & Alvarez, N. (2024). Towards metacognitive development through simulation in teacher education. International Journal on Studies in Education (IJonSE), 6(1), 27-50.https://doi.org/10.46328/ijonse.176 [Google Scholar] [Crossref]

5. Antipolo, A. M. R., & Rogayan, D. V. Jr. (2021). Filipino prospective teachers’ experiences in teaching in K12 science curriculum: A cross-sectional research. Jurnal Pendidikan Biologi Indonesia, 7(1), 1-10. https:// doi.org/10. 2022219/jpbi.v7i1.15468 (Bolognesi and Verrillo, 2019) [Google Scholar] [Crossref]

6. Antipolo, A. M. R., & Rogayan, D. V. Jr. (2021). Filipino prospective teachers’ experiences in teaching in K12 science curriculum: A cross-sectional research. Jurnal Pendidikan Biologi Indonesia, 7(1), 1-10. https:// doi.org/10. 2022219/jpbi.v7i1.15468 [Google Scholar] [Crossref]

7. Banda, H. J., & Nzabahimana, J. (2021). Effect of integrating physics education technology simulations on students’ conceptual understanding in physics: A review of literature. Physical review physics education research, 17(2), 023108. https://doi.org/10.1103/PhysRevPhysEducRes.17.023108 DOI: https://doi.org/10.1103/PhysRevPhysEducRes.17.023108 [Google Scholar] [Crossref]

8. Bolognesi, M., & Vernillo, P. (2019). How abstract concepts emerge from metaphorical images: The metonymic way. Language and Communication, 69, 26–41. https://doi.org/10.1016/j.langcom.2019.05.003 [Google Scholar] [Crossref]

9. Brophy, Sean & Magana, Alejandra & Strachan, Alejandro. (2020). Lectures and Simulation Laboratories to Improve Learners Conceptual Understanding.. Advances in Engineering Education. 3. 1-27. [Google Scholar] [Crossref]

10. Casanoves, M., Salvadó, Z., González, Á., Valls, C., & Novo, M. T. (2017). Learning genetics through a scientific inquiry game. Journal of Biological Education, 51(2), 99–106. https://doi.org/10.1080/00219266.2016.1177569 [Google Scholar] [Crossref]

11. Correia, A. P., Koehler, N., Thompson, A., & Phye, G. (2019). The application of PhET simulation to teach gas behavior on the submicroscopic level: secondary school students’ perceptions. Research in Science and Technological Education, 37(2), 193–217. https://doi.org/10.1080/02635143.2018.1487834 [Google Scholar] [Crossref]

12. de Mello, Rafael & Coelho, Matheus. (2021). Characterizing the Experience of Subjects in Software Engineering Studies. 10.48550/arXiv.2110.02835. Kendall’s Tau. [Google Scholar] [Crossref]

13. Daniar, F., & Sari, P. M. (2022). Pengembangan Multimedia Interaktif Macromedia FlashBerbasis Keterampilan Berfikir Kritis pada Pembelajaran IPA di Sekolah Dasar.Jurnal Paedagogy: Jurnal Penelitian Dan Pengembangan Pendidikan, 9(4), 646–654. https://doi.org/10.33394/jp.v9i4.5463 [Google Scholar] [Crossref]

14. Dewi, F. P., Yuliati, L., & Supriana, E. (2023). The Effect of Online Discovery-Inquiry Learning on Improving Critical Thinking Ability and Concept Mastery in Temperature and Heat Materials. Jurnal Pendidikan Sains. https://doi.org/10.17977/jps.v11i22023p065 [Google Scholar] [Crossref]

15. Drastisianti.A, Dewi.A.K, Aligiri.D (2024). Effectiveness of Guided Inquiry Learning With PhET Simulation to Improve Students’ Critical Thinking Ability And Understanding of Reaction Rate Concepts. International Journal of Pedagogy and Teacher Education, 8(2), 235-252. https://doi.org/10.20961/ijpte.v8i2.93924 DOI: https://doi.org/10.20961/ijpte.v8i2.93924 [Google Scholar] [Crossref]

16. Duratun, A. D., & Maryani, I. (2023). The Influence of Self-Efficacy on Metacognition Skills of High Grade Students. International Journal of Elementary Education. https://doi.org/10.23887/ijee.v7i3.62125 [Google Scholar] [Crossref]

17. Elladora, S. T., Gaylan, E. G., Taneo, J. K. B., Callanga, C. H., Becbec, J., Bercero, G. I. M. R., Piloton-Narca, M., & Picardal, M. T. (2024, April 1). Challenges in teaching biotechnology in the Philippine STE program. Elladora | International Journal of Learning, Teaching and Educational Research. https://ijlter.org/index.php/ijlter/article/view/9846/pdf [Google Scholar] [Crossref]

18. Espinoza, F. (2020). Impact of guided inquiry with simulations on knowledge of electricity and wave phenomena. arXiv preprint arXiv:2012.05826. https://arxiv.org/abs/2012.05826 DOI: https://doi.org/10.19044/esj.2020.v16n33p1 [Google Scholar] [Crossref]

19. Fauzi, A., Rosyida, A. M., Rohma, M., & Khoiroh, D. (2021). The difficulty index of biology topics in Indonesian Senior High School: Biology undergraduate students’ perspectives. JPBI (Jurnal Pendidikan Biologi Indonesia), 7(2), 149–158. https://doi.org/10.22219/jpbi.v7i2.16538 [Google Scholar] [Crossref]

20. Festinger, L. (1957). A theory of cognitive dissonance: Stanford university press. DOI: https://doi.org/10.1515/9781503620766 [Google Scholar] [Crossref]

21. Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive–developmental inquiry. American psychologist, 34(10), 906. DOI: https://doi.org/10.1037//0003-066X.34.10.906 [Google Scholar] [Crossref]

22. Ford, D. J., Luke, S. E., Vaughn, S. M., & Fulchini-Scruggs, A. (2023). Virtual Simulations to Practice Whole Group Discussions: Preservice Teachers’ Metacognitive Awareness. Journal of Educational Technology Systems, 52(1), 73-95. https://doi.org/10.1177/00472395231184566 [Google Scholar] [Crossref]

23. Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American journal of Physics, 66(1), 64-74. https://doi.org/10.1119/1.18809 DOI: https://doi.org/10.1119/1.18809 [Google Scholar] [Crossref]

24. Hartono, W., Nurfitri, N., Ridwan, R., Kase, E., Lake, F., & Y. Zebua, R. (2023). Artificial Intelligence (AI) Solutions In English Language Teaching: Teachers-Students Perceptions And Experiences. Journal on Education, 6(1), 1452 -1461. https://doi.org/10.31004/joe.v6i1.3101 [Google Scholar] [Crossref]

25. Haryadi, R., & Pujiastuti, H. (2020). PhET simulation software-based learning to improve science process skills. Journal of Physics: Conference Series, 1521(2), 0–6. https://doi.org/10.1088/1742-6596/1521/2/022017 [Google Scholar] [Crossref]

26. Havnen, A., Anyan, F. and Nordahl, H. (2024), Metacognitive strategies mediate the association between metacognitive beliefs and perceived quality of life. Scand J Psychol, 65: 656-664. https://doi.org/10.1111/sjop.13015 [Google Scholar] [Crossref]

27. Inayah, N., & Masruroh, M. (2021). PhET Simulation Effectiveness as Laboratory Practices Learning Media to Improve Students’ Concept Understanding. Prisma Sains : Jurnal Pengkajian Ilmu Dan Pembelajaran Matematika Dan IPA IKIP Mataram, 9(2), 152. https://doi.org/10.33394/j-ps.v9i2.2923 [Google Scholar] [Crossref]

28. Iyamuremye, A., Mbonyubwabo, J. P., Mbonyiryivuze, A., Hagenimana, F., Butera, M., Niyonderera, P., & Ukobizaba, F. (2023). Enhancing Understanding of Challenging Chemistry and Physics Concepts in Secondary Schools of Kayonza District through Computer Simulation-Based Learning. 2(2), 1–28. https://doi.org/10.58197/prbl/thrf5883 [Google Scholar] [Crossref]

29. Lawsin, N.L.P. & Garcia, G. (2017). Development of digital courseware in Transmission Genetics (Published Master's Thesis). Philippine Normal University, Manila. https://pnu-onlinecommons.org/omp/index.php/ pnu-oc/catalog/book/369 [Google Scholar] [Crossref]

30. Lindgren, R., Tscholl, M., Wang, S., & Johnson, E. (2016). Enhancing learning and engagement through embodied interaction within a mixed reality simulation. Computers and Education, 95, 174–187. https://doi.org/10.1016/j.compedu.2016.01.001 [Google Scholar] [Crossref]

31. Metcalfe, J., & Shimamura, A. P. (1994) Metacognition: Knowing about knowing (1st. ed.). The MIT Press. [Google Scholar] [Crossref]

32. Millanes, M. A. A., Paderna, E. E. S., & Que, E. N. (2017). Podcast-Integrated physics teaching approach: Effects on student conceptual understanding. The Normal Lights, 11(2), 60-85. https://po.pnuresearch portal.org/ejournal/index.php/normallights/article/view/527 [Google Scholar] [Crossref]

33. Newman, Dina & Snyder, Christopher & Fisk, J. & Wright, L. (2016). Development of the Central Dogma Concept Inventory (CDCI) Assessment Tool. Cell Biology Education. 15. ar9-ar9. 10.1187/cbe.15-06-0124 [Google Scholar] [Crossref]

34. Osman, E., BouJaoude, S., & Hamdan, H. (2017). An Investigation of Lebanese G7-12 Students’ Misconceptions and Difficulties in Genetics and Their Genetics Literacy. International Journal of Science and Mathematics Education, 15(7), 1257–1280. https://doi.org/10.1007/s10763-016-9743-9 [Google Scholar] [Crossref]

35. Özcan, H., & Demirel, R. (2019). Exploring middle school students’ cognitive structures about environmental problems through their drawings. Baskent University Journal of Education, 6(1), 68-83 [Google Scholar] [Crossref]

36. Perdana, R., Rudibyani, R. B., Budiyono, Sajidan, & Sukarmin. (2020). The Effectiveness of Inquiry Social Complexity to Improving Critical and Creative Thinking Skills of Senior High School Students. International Journal of Instruction, 13(4), 477-490. https://doi.org/10.29333/iji.2020.13430a [Google Scholar] [Crossref]

37. PhET Interactive Simulations. (n.d.). PhET. https://phet.colorado.edu/en/about [Google Scholar] [Crossref]

38. Pranata, O. D. (2023). Enhancing conceptual understanding and concept acquisition of gravitational force through guided inquiry utilizing PhET simulation. Sainstek: Jurnal Sains dan Teknologi, 15(1), 44-52. DOI: https://doi.org/10.31958/js.v15i1.9191 [Google Scholar] [Crossref]

39. Rodrigues, F. de A. A., & Aparicio, C. P. S. (2025). Implicaciones de la metacognición en el desarrollo de estrategias de aprendizaje para estudiantes con altas capacidades. Ciencia Latina, 8(6), 10100–10114. https://doi.org/10.37811/cl_rcm.v8i6.15672 [Google Scholar] [Crossref]

40. Rogayan, D. V. Jr., & Dollete, L. F. (2019). Development and validation of physical science workbook for senior high school. Science Education International, 30(4), 284-290. https://doi.org/10.33828/sei.v30. i4.5 [Google Scholar] [Crossref]

41. Saadi, P., Clarita, D., & Sholahuddin, A. (2021). Guided inquiry assisted by metacognitive questions to improve metacognitive skills and students' conceptual understanding of chemistry. Journal of Physics: Conference Series, 1760(1), 012023. https://doi.org/10.1088/1742-6596/1760/1/012023 DOI: https://doi.org/10.1088/1742-6596/1760/1/012023 [Google Scholar] [Crossref]

42. Salam, N., Suyanto, S. ., & Ningsih, S. N. . (2024). Maximizing the Potential of Digital Learning Media in Primary Education: Insights from a Systematic Literature Review. Indonesian Journal of Educational Research and Review, 7(3), 615–629. https://doi.org/10.23887/ijerr.v7i3.80617 [Google Scholar] [Crossref]

43. Samitra, D., Firdaus, M., & Krisnawati, Y. (2023). Physics Education Technology Project(PhET): Interactive Simulation to Improve Students' Understanding of Concepts and Perceptions. JurnalPaedagogy, 10(3), 646-654. doi:https://doi.org/10.33394/jp.v10i3.7879 [Google Scholar] [Crossref]

44. Santos, J. T. D., Lim, R. R., & Rogayan, D. V. Jr. (2021). Least mastered competencies in biology: Basis for instructional intervention. JPBI (Jurnal Pendidikan Biologi Indonesia), 7(2), 208-221. https://doi.org/10.22219/jpbi.v7i3. 17106 [Google Scholar] [Crossref]

45. Sastradika, D., Iskandar, I., Syefrinando, B., & Shulman, F. (2021). Development of animation-based learning media to increase student’s motivation in learning physics. Journal of Physics: Conference Series, 1869(1). https://doi.org/10.1088/1742-6596/1869/1/012180 [Google Scholar] [Crossref]

46. Schwab, K., & Sala-i-Martín, X. (2016). The global competitiveness report 2013–2014: Full data edition. http:// repositorio.colciencias.gov.co:8080/handle/11146/223 [Google Scholar] [Crossref]

47. Schwedler, S., & Kaldewey, M. (2020). Linking the submicroscopic and symbolic level in physical chemistry: How voluntary simulation-based learning activities foster first year university students’ conceptual understanding. Chemistry Education Research and Practice, 21(4), 1132–1147. https://doi.org/10.1039/c9rp00211a [Google Scholar] [Crossref]

48. SEI-DOST & UP NISMED. (2011). Framework for Philippine science teacher education. Manila: SEI-DOST & UP NISMED. https://sei.dost.gov.ph/images/downloads/publ/sei_sciteach.pdf [Google Scholar] [Crossref]

49. Selamet, I. K. (2020). Penggunaan Media Visual Untuk Meningkatkan Hasil Belajar Mata Pelajaran IPS Siswa Kelas V SD. Jurnal Paedagogy: Jurnal Penelitian Dan Pengembangan Pendidikan, 7(2), 121–125. [Google Scholar] [Crossref]

50. Sihombing, S., Silalahi, H. R., Sitinjak, J. R., & Tambunan, H. (2021). Analisis Minat dan Motivasi Belajar, Pemahaman Konsep dan Kreativitas Siswa terhadap Hasil Belajar Selama Pembelajaran dalam Jaringan. Jurnal Pendidikan Matematika (JUDIKA EDUCATION), 4(1), 41–55. https://doi.org/10.31539/judika.v4i1.2061 [Google Scholar] [Crossref]

51. Stern, F., & Kampourakis, K. (2017). Teaching for genetics literacy in the post-genomic era. Studies in Science Education, https://doi.org/10.1080/03057267.2017.1392731 53(2), 193–225. [Google Scholar] [Crossref]

52. Susilawati, A., Yusrizal, Y., Halim, A., Syukri, M., Khaldun, I., & Susanna, S. (2022). Effect of Using Physics Education Technology (PhET) Simulation Media to Enhance Students’ Motivation and Problem-Solving Skills in Learning Physics. Jurnal Penelitian Pendidikan https://doi.org/10.29303/jppipa.v8i3.1571 IPA, 8(3), 1157–1167. [Google Scholar] [Crossref]

53. Sylviani, S., Permana, F. C., & Utomo, R. G. (2020). PHET Simulation sebagai Alat Bantu Siswa Sekolah Dasar dalam Proses Belajar Mengajar Mata Pelajaran Matematika. Edsence: Jurnal Pendidikan https://doi.org/10.17509/edsence.v2i1.25184 Multimedia, 2(1), 1–10. [Google Scholar] [Crossref]

54. Verawati, N. N. S. P., & Nisrina, N. (2025). Reimagining physics education: Addressing student engagement, curriculum reform, and technology integration for learning. International Journal of Ethnoscience and Technology in Education, 2(1), 158–181. https://doi.org/10.33394/ijete.v2i1.14058 DOI: https://doi.org/10.33394/ijete.v2i1.14058 [Google Scholar] [Crossref]

55. Verawati, N. N. S. P., Handriani, L. S., & Prahani, B. K. (2022). The Experimental Experience of Motion Kinematics in Biology Class Using PhET Virtual Simulation and Its Impact on Learning Outcomes. International Journal of Essential Competencies in Education, 1(1), 11–17. https://doi.org/10.36312/ijece.v1i1.729 [Google Scholar] [Crossref]

56. Wen, C. T., Liu, C. C., Chang, H. Y., Chang, C. J., Chang, M. H., Chiang, S. H. F., … Hwang, F. K. (2020). Students’ guided inquiry with simulation and its relation to school science achievement and scientific literacy. Computers & Education, 149, 103830. https://doi.org/10.1016/j.compedu.2020.103830 DOI: https://doi.org/10.1016/j.compedu.2020.103830 [Google Scholar] [Crossref]

57. Yuliati, L., Riantoni, C., & Mufti, N. (2018). Problem-solving skills on direct current electricity through inquiry-based learning with PhET simulations. International Journal of Instruction, 11(4), 123–138. https://doi.org/10.12973/iji.2018.1149a [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles