“The Influence of Blockchain Technology on Humanitarian Supply Chain Resilience: The Mediating Role of Trust and Collaboration in Resource Constraint Settings”.

Authors

Abu Bakarr Turay, MCIPS (CS)

African Research University, Lusaka (Zambia)

Emmanuel Awusi Arthur

African Research University, Lusaka (Zambia)

Article Information

DOI: 10.47772/IJRISS.2025.91100335

Subject Category: Business Management

Volume/Issue: 9/11 | Page No: 4305-4325

Publication Timeline

Submitted: 2025-11-21

Accepted: 2025-12-02

Published: 2025-12-10

Abstract

This study explores how blockchain can help to make humanitarian supply chains more resilient through the creation of trust and collaboration, specifically in a resource limited setting. Continuous inefficiencies and absence of transparency in humanitarian operations are the inspirations behind the research, which aims to assess the direct role of blockchain in resilience and the possible mediating mechanisms. The research hypothesizes the conceptualization of blockchain as strategic capability that supports both relational and operational performance guided by the Resource-Based View (RBV) and Swift Trust Theory (STT). Two hundred and fifty respondents who were the representatives of 300 humanitarian organizations in Freetown, Sierra Leone, collected data and examined using the Partial Least Squares Structural Equation Modeling (PLS-SEM). Results show that blockchain has a considerable positive effect on trust, collaboration, and resilience in general, and collaboration partly mediates the association, whereas trust does not have a mediating role. The research suggests the incorporation of blockchain-based collaboration and trust systems into the humanitarian action. The findings are relevant to the digital-transformation theory and can provide practical advice to policy-makers and practitioners who want to create resilient and transparent humanitarian systems.

Keywords

Blockchain Technology; Humanitarian Supply Chain Resilience

Downloads

References

1. Altay, N., Gunasekaran, A., Dubey, R., & Childe, S. J. (2018). Agility and resilience as antecedents of supply chain performance under moderating effects of organizational culture. International Journal of Production Research, 56(7), 2439–2458. https://doi.org/10.1080/00207543.2017.1360199 [Google Scholar] [Crossref]

2. Anhang Price, R., Elliott, M. N., Zaslavsky, A. M., Hays, R. D., Lehrman, W. G., Rybowski, L., & Cleary, P. D. (2022). Examining the role of survey mode on response rates and bias in patient experience surveys. Health Services Research, 57(2), 362–372. https://doi.org/10.1111/1475-6773.13938 [Google Scholar] [Crossref]

3. Bag, S., Yadav, G., Dhamija, P., & Kataria, K. K. (2025). Enhancing humanitarian supply chain resilience through blockchain-enabled collaboration. Annals of Operations Research. https://doi.org/10.1007/s10479-025-05931-4 [Google Scholar] [Crossref]

4. Baharmand, H., Boersma, K., & Meesters, K. (2021). A typology of coordination in humanitarian information management. Computers in Human Behavior, 120, 106759. https://doi.org/10.1016/j.chb.2021.106759 [Google Scholar] [Crossref]

5. Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120. https://doi.org/10.1177/014920639101700108 [Google Scholar] [Crossref]

6. Baruch, Y., & Holtom, B. C. (2021). Survey response rate levels and trends in organizational research. Human Relations, 74(8), 1426–1447. https://doi.org/10.1177/0018726720909418 [Google Scholar] [Crossref]

7. Besiou, M., Van Wassenhove, L. N., & Pedraza Martinez, A. J. (2021). Humanitarian operations: A review. European Journal of Operational Research, 293(3), 757–773. https://doi.org/10.1016/j.ejor.2020.12.040 [Google Scholar] [Crossref]

8. Byrne, B. M. (2016). Structural equation modeling with AMOS: Basic concepts, applications, and programming (3rd ed.). Routledge. [Google Scholar] [Crossref]

9. Castañer, X., & Oliveira, N. (2020). Collaboration and collaborative advantage: Theory, research, and practice. Journal of Management, 46(6), 1085–1116. https://doi.org/10.1177/0149206320914943 [Google Scholar] [Crossref]

10. Chang, S. E., Luo, H. L., & Chen, Y. C. (2019). Blockchain-enabled supply chain management for sustainable development. Applied Sciences, 9(22), 4739. https://doi.org/10.3390/app9224739 [Google Scholar] [Crossref]

11. Crosby, M., Pattanayak, P., Verma, S., & Kalyanaraman, V. (2016). Blockchain technology: Beyond bitcoin. Applied Innovation Review, 2, 6–10. [Google Scholar] [Crossref]

12. Day, J. M. (2014). Fostering emergent resilience: The complex adaptive supply network of disaster relief. International Journal of Production Research, 52(7), 1970–1988. https://doi.org/10.1080/00207543.2013.787496 [Google Scholar] [Crossref]

13. Dohale, V., Gunasekaran, A., & Dubey, R. (2022). Building supply chain collaboration and resilience through digitalization: Lessons from the COVID-19 pandemic. Production Planning & Control, 33(16– 17), 1572–1587. https://doi.org/10.1080/09537287.2021.1882691 [Google Scholar] [Crossref]

14. Dubey, R., Gunasekaran, A., Bryde, D. J., Dwivedi, Y. K., & Papadopoulos, T. (2020). Blockchain technology for enhancing swift-trust, collaboration, and resilience within a humanitarian supply chain setting. International Journal of Production Research, 58(11), 3381–3398. https://doi.org/10.1080/00207543.2020.1722860 [Google Scholar] [Crossref]

15. Dubey, R., Gunasekaran, A., Childe, S. J., Bryde, D. J., Giannakis, M., Foropon, C., & Hazen, B. T. (2019). Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism. International Journal of Production Economics, 226, 107599. https://doi.org/10.1016/j.ijpe.2019.107599 [Google Scholar] [Crossref]

16. Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1–4. https://doi.org/10.11648/j.ajtas.20160501.11 [Google Scholar] [Crossref]

17. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312 [Google Scholar] [Crossref]

18. Gray, B. (1989). Collaborating: Finding common ground for multiparty problems. Jossey-Bass. [Google Scholar] [Crossref]

19. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM) (3rd ed.). Sage Publications. [Google Scholar] [Crossref]

20. Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115– 135. https://doi.org/10.1007/s11747-014-0403-8 [Google Scholar] [Crossref]

21. Ivanov, D., & Dolgui, A. (2021). A digital supply chain twin for managing disruptions. International Journal of Production Research, 59(1), 1–23. https://doi.org/10.1080/00207543.2020.1828489 [Google Scholar] [Crossref]

22. Ji, G., Zhu, C., & Zhang, G. (2020). Measuring supply chain resilience in humanitarian logistics. Annals of Operations Research, 283(1–2), 79–103. https://doi.org/10.1007/s10479-017-2656-9 [Google Scholar] [Crossref]

23. Kamalahmadi, M., & Parast, M. M. (2016). A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research. International Journal of Production Economics, 171(1), 116–133. https://doi.org/10.1016/j.ijpe.2015.10.023 [Google Scholar] [Crossref]

24. Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). Guilford Press. [Google Scholar] [Crossref]

25. Kouhizadeh, M., Saberi, S., & Sarkis, J. (2021). Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers. International Journal of Production Economics, 231, 107831. https://doi.org/10.1016/j.ijpe.2020.107831 [Google Scholar] [Crossref]

26. Kshetri, N. (2018). The emerging role of big data in key development issues: Opportunities, challenges, and concerns. In Big Data for Development (pp. 1–22). Cambridge University Press. https://doi.org/10.1017/9781108582483.002 [Google Scholar] [Crossref]

27. Kumar, R., Singh, R. K., & Dwivedi, Y. K. (2021). Application of industry 4.0 technologies in SMEs for ethical and sustainable operations. Technological Forecasting and Social Change, 168, 120771. https://doi.org/10.1016/j.techfore.2021.120771 [Google Scholar] [Crossref]

28. Lu, Q., Papagiannidis, S., & Alamanos, E. (2018). Internet of Things: A systematic review of the business literature from the user and organisational perspectives. Technological Forecasting and Social Change, 136, 285–297. https://doi.org/10.1016/j.techfore.2018.01.020 [Google Scholar] [Crossref]

29. Marić, J., Opetuk, T., & Marković, I. (2022). Digital transformation of humanitarian logistics. Sustainability, 14(15), 9412. https://doi.org/10.3390/su14159412 [Google Scholar] [Crossref]

30. Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709–734. https://doi.org/10.2307/258792 [Google Scholar] [Crossref]

31. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf [Google Scholar] [Crossref]

32. Nandi, M. L., Sarkis, J., & Hervani, A. A. (2020). Blockchain technology in operations and supply chain management: A systematic review of applications, challenges and future research directions. [Google Scholar] [Crossref]

33. International Journal of Production Research, 58(7), 2054–2076. https://doi.org/10.1080/00207543.2019.1651946 [Google Scholar] [Crossref]

34. OCHA. (2022). Global humanitarian overview 2022. United Nations Office for the Coordination of Humanitarian Affairs. https://gho.unocha.org [Google Scholar] [Crossref]

35. Ozdemir, A. I., Hekimoglu, M., & Gozlu, S. (2021). Blockchain-based solutions for sustainable supply chains. Sustainability, 13(14), 7960. https://doi.org/10.3390/su13147960 [Google Scholar] [Crossref]

36. Papadopoulos, T., Gunasekaran, A., Dubey, R., & Childe, S. J. (2017). The impact of big data on worldclass sustainable manufacturing. International Journal of Advanced Manufacturing Technology, 84(1–4), 631–645. https://doi.org/10.1007/s00170-015-7674-1 [Google Scholar] [Crossref]

37. Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual Review of Psychology, 63, 539–569. https://doi.org/10.1146/annurev-psych-120710-100452 [Google Scholar] [Crossref]

38. Rejeb, A., Rejeb, K., Keogh, J. G., & Treiblmaier, H. (2023). Blockchain technology in humanitarian logistics: A comprehensive review and future research agenda. International Journal of Production Research, 61(4), 1091–1114. https://doi.org/10.1080/00207543.2022.2104655 [Google Scholar] [Crossref]

39. Rodríguez-Espíndola, O., Chowdhury, S., Beltagui, A., & Albores, P. (2020). The potential of blockchain to enhance supply chain resilience during emergencies. International Journal of Operations & Production Management, 40(12), 2043–2069. https://doi.org/10.1108/IJOPM-03-2020-0177 [Google Scholar] [Crossref]

40. Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019). Blockchain technology and its relationships to sustainable supply chain management. International Journal of Production Research, 57(7), 2117–2135. https://doi.org/10.1080/00207543.2018.1533261 [Google Scholar] [Crossref]

41. Sarstedt, M., Ringle, C. M., & Hair, J. F. (2022). Partial least squares structural equation modeling. In H. N. J. Schwaiger & C. M. Ringle (Eds.), Handbook of Market Research (pp. 587–632). Springer. [Google Scholar] [Crossref]

42. Schoorman, F. D., Mayer, R. C., & Davis, J. H. (2007). An integrative model of organizational trust: Past, present, and future. Academy of Management Review, 32(2), 344–354. https://doi.org/10.5465/amr.2007.24348410 [Google Scholar] [Crossref]

43. Tatham, P. H., & Kovács, G. (2010). The application of swift trust to humanitarian logistics. International Journal of Production Economics, 126(1), 35–45. https://doi.org/10.1016/j.ijpe.2009.10.006 [Google Scholar] [Crossref]

44. Tapscott, D., & Tapscott, A. (2016). Blockchain revolution: How the technology behind bitcoin and other cryptocurrencies is changing the world. Penguin. [Google Scholar] [Crossref]

45. Thomson, A. M., Perry, J. L., & Miller, T. K. (2007). Conceptualizing and measuring collaboration. Journal of Public Administration Research and Theory, 17(2), 231–258. https://doi.org/10.1093/jopart/mul001 [Google Scholar] [Crossref]

46. Torres, R., Vasquez, A., & Lopes, F. (2020). Blockchain adoption in disaster relief logistics. Procedia [Google Scholar] [Crossref]

47. Manufacturing, 51, 1952–1959. https://doi.org/10.1016/j.promfg.2020.10.272 [Google Scholar] [Crossref]

48. Wang, Y., Han, J. H., & Beynon-Davies, P. (2021). Understanding blockchain technology for future supply chains: A systematic literature review and research agenda. Supply Chain Management: An International Journal, 26(1), 113–134. https://doi.org/10.1108/SCM-03-2020-0093 [Google Scholar] [Crossref]

49. World Bank. (2023). Sierra Leone economic update: Leveraging digital transformation for inclusive growth. World Bank Group. https://www.worldbank.org [Google Scholar] [Crossref]

50. Yu, C., Zhou, Y., & Wang, Y. (2021). Blockchain adoption in the supply chain: Empirical evidence from manufacturing firms. Technological Forecasting and Social Change, 168, 120789. https://doi.org/10.1016/j.techfore.2021.120789 [Google Scholar] [Crossref]

51. Zhang, C., & Schmidt, C. G. (2020). Blockchain technology and the circular economy: Implications for sustainability and social responsibility. Journal of Cleaner Production, 270, 122389. https://doi.org/10.1016/j.jclepro.2020.122389 [Google Scholar] [Crossref]

52. Zhang, Y., Xu, X., & Ma, L. (2022). Exploring blockchain-based trust mechanisms in humanitarian logistics. International Journal of Disaster Risk Reduction, 70, 102936. https://doi.org/10.1016/j.ijdrr.2021.102936 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles