Enhancing Sorghum Productivity in Acidic Soils Through Lime–Fertilizer Synergism: Agronomic, Economic, and Composite Performance Analysis

Authors

Edwin Kiprono Rotich

Soil Science Department, University of Eldoret. (Kenya)

Peter Kisinyo Oloo

Department of Agronomy, Rongo University (Kenya)

Peter Asbon Opala

Maseno University, Kenya, Department of Crops and Soil Sciences (Kenya)

Gudu Samwel Odundo

Department of Agronomy, Rongo University (Kenya)

Article Information

DOI: 10.51244/IJRSI.2025.1210000108

Subject Category: Agriculture

Volume/Issue: 12/10 | Page No: 1221-1233

Publication Timeline

Submitted: 2025-08-22

Accepted: 2025-10-30

Published: 2025-11-06

Abstract

Sorghum productivity in Western Kenya is severely constrained by acidic soils, particularly Ferralsols and Acrisols prone to aluminum toxicity and phosphorus fixation. This study assessed the performance of lime-integrated fertilizer treatments under smallholder conditions using a randomized complete block design across three sites. Sorghum grain yield (SGY), agronomic efficiency (AE), nutrient uptake efficiency (NUE), and gross margin (GM) were measured alongside the formulation of a composite Performance Index (PI) designed to simulate both physiological and economic effects. We developed a composite Performance Index to integrate agronomic and economic outcomes, enabling balanced evaluation of lime–fertilizer strategies across acid-prone sites. The PI incorporated weighting scenarios reflecting equal and smallholder-adjusted preferences. Results showed that lime enhanced AE (up to 55%), NUE (up to 34.6%), and SGY ≥ 1.8 t ha⁻¹ across sites, with intermediate fertilizer rates yielding superior performance. GM exceeding $450 ha⁻¹ and benefit–cost ratios over 2.0, demonstrating strong economic viability, Lime + N37.5P13 consistently outperformed other treatments, offering agronomic–economic balance and robust PI ranking across sensitivity models. Radar and contour plots identified optimal combinations and revealed trade-offs between efficiency and yield. These findings support lime as a foundational input rather than a supplemental one, and advocate for context-driven ISFM strategies aligned with smallholder realities. The PI framework offers a flexible and empirically grounded tool for sustainable intensification decisions in acid soil systems.

Keywords

•Acidic Soils •Lime–Fertilizer Integration •Performance Index •Agronomic Efficiency •Gross Margin

Downloads

References

1. Kisinyo, P. O., Othieno, C. O., Gudu, S. O., Okalebo, J. R., Opala, P. A., Maghanga, J. K., Ng’etich, W. K., Agalo, J. J., Opile, R. W., Kisinyo, J. A., & Ogola, B. O. (2013). Phosphorus Sorption and Lime Requirements of Maize Growing Acid Soils of Kenya. Sustainable Agriculture Research, 2(2), 116. https://doi.org/10.5539/sar.v2n2p116 [Google Scholar] [Crossref]

2. Gudu, S., Maina, S. M., Onkware, A. O., Ombakho, G., & Ligeyo, D. O. (2002). Screening of Kenyan maize germplasm for tolerance to low pH and aluminium for use in acid soils of Kenya. Seventh Eastern and Southern Africa Regional Maize Conference, 216–221. https://books.google.com/books?hl=en&lr=&id=dRoOfAh6VjAC&oi=fnd&pg=PA216&dq=Gudu,+S.+,Maina,+S.+,Onkware,+A.+,Ombakho,+G.+and+Ligeyo,+D.,+(2001).+Screening+of+Kenyan+maize+germplasm+for+tolerance+to+low+pH+and+aluminum+for+use+in+acid+soils+of+Kenya.+7th+ [Google Scholar] [Crossref]

3. Opala, P. A. (2020). Response of soybean (Glycine max L.) to application of lime and phosphate fertilizer in an acid soil of western Kenya. Archives of Agriculture and Environmental Science, 5(4), 470–475. https://doi.org/10.26832/24566632.2020.050406 [Google Scholar] [Crossref]

4. Esilaba, A. O., Mangale, N., Kathuku-Gitonga, A. N., Kamau, D. M., Muriuki, A. W., Mbakaya, D., & Zingore, S. (2023). Overcoming soil acidity constraints through liming and other soil amendments in Kenya. A review. East African Agricultural and Forestry Journal, 87(1 & 2), 9–9. [Google Scholar] [Crossref]

5. Vanlauwe, B., Descheemaeker, K., Giller, K. E., Huising, J., Merckx, R., Nziguheba, G., Wendt, J., & Zingore, S. (2015). Integrated soil fertility management in sub-Saharan Africa: Unravelling local adaptation. Soil, 1(1), 491–508. https://doi.org/10.5194/soil-1-491-2015 [Google Scholar] [Crossref]

6. Bampa, F., O’Sullivan, L., Madena, K., Sandén, T., Spiegel, H., Henriksen, C. B., Ghaley, B. B., Jones, A., Staes, J., Sturel, S., Trajanov, A., Creamer, R. E., & Debeljak, M. (2019). Harvesting European knowledge on soil functions and land management using multi‐criteria decision analysis. Soil Use and Management, 35(1), 6–20. https://doi.org/10.1111/sum.12506 [Google Scholar] [Crossref]

7. Tittonell, P., & Giller, K. E. (2013). When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crops Research, 143, 76–90. https://doi.org/10.1016/j.fcr.2012.10.007 [Google Scholar] [Crossref]

8. Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108 [Google Scholar] [Crossref]

9. Weih, M., Bonosi, L., Ghelardini, L., & Rönnberg-Wästljung, A. C. (2011). Optimizing nitrogen economy under drought: Increased leaf nitrogen is an acclimation to water stress in willow (Salix spp.). Annals of Botany, 108(7), 1347–1353. https://doi.org/10.1093/aob/mcr227 [Google Scholar] [Crossref]

10. Okalebo, J. R. 1, Palm, C. A. 2, Lekasi, J.K.3, Nandwa, S. M. 4, Othieno, C. O. 1, Waigwa, M. 1, & and Ndungu, K. W. 1. (2002). Use of Organic and Inorganic Resources to Increase Maize Yields in some Kenyan Infertile Soils: A Five-Year Exparienve. In Managing nutrient cycles to sustain soil fertlity in sub- Saharan Africa (pp. 359–372). [Google Scholar] [Crossref]

11. Bange, M. P., Hammer, G. L., & Rickert, K. G. (1998). Temperature and sowing date affect the linear increase of sunflower harvest index. Agronomy Journal, 90(3), 324–328. https://doi.org/10.2134/agronj1998.00021962009000030002x [Google Scholar] [Crossref]

12. Vanlauwe, B., Chianu, J., Giller, K. E., Merckx, R., Mokwunye, U., Pypers, P., Shepherd, K. D., Smaling, E. M. A., Woomer, P. L., & Sanginga, N. (2010). Integrated soil fertility management: Operational definition and consequences for implementation and dissemination. Outlook on Agriculture, 39(1), 17–24. https://doi.org/10.5367/000000010791169998 [Google Scholar] [Crossref]

13. Okalebo, J. R., Othieno, C. O., Woomer, P. L., Karanja, N. K., Semoka, J. R. M., Bekunda, M. A., Mugendi, D. N., Muasya, R. M., Bationo, A., & Mukhwana, E. J. (2006). Available technologies to replenish soil fertility in East Africa. Nutrient Cycling in Agroecosystems, 76(2–3), 153–170. https://doi.org/10.1007/s10705-005-7126-7 [Google Scholar] [Crossref]

14. Fageria, N. K., & Baligar, V. C. (2008). Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Advances in Agronomy, 99, 345–399. https://www.sciencedirect.com/science/article/pii/S0065211308004070 [Google Scholar] [Crossref]

15. Kochian, L. V., Hoekenga, O. A., & Piñeros, M. A. (2004). How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology, 55(1), 459–493. https://doi.org/10.1146/annurev.arplant.55.031903.141655 [Google Scholar] [Crossref]

16. Curtin, D., & Syers, J. K. (2001). Lime-Induced Changes in Indices of Soil Phosphate Availability. Soil Science Society of America Journal, 65(1), 147–152. https://doi.org/10.2136/sssaj2001.651147x [Google Scholar] [Crossref]

17. Javed, B., Katanda, Y., Nadeem, M., Wickremasinghe, T., Farhain, M. M., Thomas, R., Galagedara, L., Guo, X., & Cheema, M. (2024). Effectiveness of wood ash and paper sludge as liming and nutrient sources for annual ryegrass grown in podzolic soils of Newfoundland. Soil Science Society of America Journal, 88(3), 792–802. https://doi.org/10.1002/saj2.20648 [Google Scholar] [Crossref]

18. Tan, K., Keltjens, W. G., & Findenegg, G. R. (1993). Aluminum toxicity in sorghum genotypes as influenced by solution acidity. Soil Science and Plant Nutrition, 39(2), 291–298. https://doi.org/10.1080/00380768.1993.10417000 [Google Scholar] [Crossref]

19. Ostmeyer, T. J., Bahuguna, R. N., Kirkham, M. B., Bean, S., & Jagadish, S. V. K. (2022). Enhancing Sorghum Yield Through Efficient Use of Nitrogen – Challenges and Opportunities. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.845443 [Google Scholar] [Crossref]

20. Fixen, P., Brentrup, F., Bruulsema, T., Garcia, F., Norton, R., & Zingore, S. (2015). Nutrient/fertilizer use efficiency: Measurement, current situation and trends. Managing Water and Fertilizer for Sustainable Agricultural Intensification, 270, 2–7. https://ageconsearch.umn.edu/record/208412/files/managing_water_and_fertilizer_for_sustainable_agricultural_intensification.pdf#page=21 [Google Scholar] [Crossref]

21. Guindo, M., Traoré, B., Birhanu, B. Z., Coulibaly, A., & Tabo, R. (2022). Microdosing of compost for sustainable production of improved sorghum in southern Mali. Agronomy, 12(6), 1480. [Google Scholar] [Crossref]

22. Nyokabi, M., Mugwe, J., Danga, B., & Micheni, A. N. (2025). Improving soil fertility, sorghum productivity and economic returns through organic and inorganic inputs in semiarid Kenya. Discover Soil, 2(1), 44. https://doi.org/10.1007/s44378-025-00068-x [Google Scholar] [Crossref]

23. Kula, O. O., Nyangweso, P. M., & Saina, E. (2023). Socio-Economic Factors Affecting Profitability of Sorghum Farming in Siaya County, Kenya. Journal of Economics and Financial Analysis, 6(2), 69–83. https://www.ojs.tripaledu.com/index.php/jefa/article/view/77 [Google Scholar] [Crossref]

24. Cheptoek, R. P. (2021). Maize Productivity, Economic Returns and Phosphorus Use Efficiency as Influenced by Lime,Minjingu Rock Phosphate and NPK Inorganic Fertilizer. International Journal of Bioresource Science, 8(1). https://doi.org/10.30954/2347-9655.01.2021.7 [Google Scholar] [Crossref]

25. Mucheru-Muna, M. (2021). Lime, manure and Inorganic Fertilizer Effects on Soil Chemical Properties, Maize Yield and Profitability in Acidic Soils in Central Highlands of Kenya. Asian Journal of Environment & Ecology. https://doi.org/10.9734/AJEE/2021/V16I330250 [Google Scholar] [Crossref]

26. Doberman, A. (2022). Liming agricultural soils in Western Kenya: Can long-term economic and environmental benefits pay off short term investments? – SPRPN. https://sprpn.org/science-corner/liming-agricultural-soils-in-western-kenya-can-long-term-economic-and-environmental-benefits-pay-off-short-term-investments/ [Google Scholar] [Crossref]

27. Kimani, D. (2022). Fertiliser use efficiency, production risks and profitability of maize on smallholder farms in East Africa. Experimental Agriculture. https://doi.org/10.1017/S001447972200014X [Google Scholar] [Crossref]

28. Daba, N. A., Li, D., Huang, J., Han, T., Zhang, L., Ali, S., Khan, M. N., Du, J., Liu, S., Legesse, T. G., Liu, L., Xu, Y., Zhang, H., & Wang, B. (2021). Long-Term Fertilization and Lime-Induced Soil pH Changes Affect Nitrogen Use Efficiency and Grain Yields in Acidic Soil under Wheat-Maize Rotation. Agronomy, 11(10), 2069. https://doi.org/10.3390/agronomy11102069 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles