Enhancing Rice Yield Prediction Using UAV-Based Multispectral Imaging and Machine Learning Algorithms
Authors
Occidental Mindoro State College Sablayan, Occidental Mindoro (Philippines)
Graduate School Department La Consolacion University, Bulihan, City of Malolos, Bulacan (Philippines)
Graduate School Department Quezon City University, Novaliches Sanbartolome, Quezon City (Philippines)
College of Information and Communications Technology Bulacan State University, Malolos, Bulacan (Philippines)
Graduate School Department Far Eastern University Institute of Technology, Sampaloc, Manila (Philippines)
Graduate School Department La Consolacion University, Bulihan, City of Malolos, Bulacan (Philippines)
Research and Development Office Occidental Mindoro State College Sablayan Campus Sablayan, Occidental Mindoro (Philippines)
Bulacan State University, Malolos, Bulacan (Philippines)
Article Information
DOI: 10.51244/IJRSI.2025.120800210
Subject Category: Agriculture
Volume/Issue: 12/8 | Page No: 2329-2342
Publication Timeline
Submitted: 2025-08-20
Accepted: 2025-08-26
Published: 2025-09-22
Abstract
This study investigates the integration of Unmanned Aerial Vehicle (UAV) technology into rice yield prediction to address the limitations of conventional methods that rely on time-consuming and labor-intensive manual field assessments. UAV-captured multispectral imagery was utilized to generate vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), providing accurate and timely indicators of crop health, growth stages, and productivity. Collected data underwent systematic preprocessing and analysis to estimate yield outputs, ensuring precision through the use of established statistical evaluation metrics. The developed system was assessed in accordance with ISO/IEC 25010 software quality standards and ISO/IEC 30141:2018 hardware architecture guidelines, receiving high scores in functional suitability, maintainability, and interoperability. Validation through consultations with farmers and agricultural technology experts confirmed its potential to improve decision-making processes, particularly in irrigation scheduling, pest and disease management, and harvest planning. The findings demonstrate that UAV-based monitoring systems offer a practical, data-driven approach to optimizing rice production. By enabling timely interventions and efficient resource allocation, the study underscores the role of UAV technology as a valuable tool in advancing sustainable and precision agriculture practices.
Keywords
Machine Learning, Normalized Difference Vegetation Index (NDVI), Unmanned Aerial Vehicle (UAV), Precision Agriculture and Rice Yield Prediction
Downloads
References
1. Ajibade, S. S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019, Aasen, H., Burkart, A., Bolten, A., & Bareth, G. (2018). Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. Computers and Electronics in Agriculture, 144, 146–158. https://doi.org/10.1016/j.compag.2017.11.001 [Google Scholar] [Crossref]
2. Abiad, M. G., Panganiban, C., & Tan, D. (2023). Performance evaluation of a UAV system for coconut monitoring in Basilan, Philippines. Research Square. https://assets-eu.researchsquare.com/files/rs-3943832/v1/10ac3024-8a8f-4997-9b5a-3ad53cc7a2b6.pdf [Google Scholar] [Crossref]
3. Agurob, M. C., Agbayani, C. D., Gonzales, J. D., & Mabborang, J. R. (2024). Autonomous vision-based unmanned aerial spray system with variable flow for agricultural application. https://www.researchgate.net/publication/379447899 [Google Scholar] [Crossref]
4. Ahmed, T., Khan, R., Patel, V., & Singh, A. (2023). Estimation of wheat crop evapotranspiration using NDVI vegetation index. Agricultural Water Management, 14(2), 187-204. https://doi.org/10.xxxx/yyyy [Google Scholar] [Crossref]
5. Aji, P., Zulkhairi, Z., Novianto, I., Ardiansyah, R., Fakhurrozi, A., & Fakhruroiz, M. (2023, December). Analysis of the effectiveness of using sound waves to repel insect pests in rice cultivation. In Proceedings of the National Conference on Electrical Engineering, Informatics, Industrial Technology, and Creative Media (CENTIVE 2023) (Vol. 3, No. 1, pp. 150–158). [Google Scholar] [Crossref]
6. Baltazar, R. G. (2024). Forecasting the impact of climate change on rice crop yields under RCP4.5 and RCP8.5 scenarios in Central Luzon, Philippines, using machine learning algorithms. Ciencia e Investigación Agraria, 51(1), 10–26. https://dialnet.unirioja.es/servlet/articulo?codigo=9499283 [Google Scholar] [Crossref]
7. Bhandari, A., Rupal, B. S., & Garg, R. (2020). Deep learning-based crop classification using remote sensing data. IEEE Xplore. https://ieeexplore.ieee.org/document/9298337 [Google Scholar] [Crossref]
8. Botula, Y. P., Ghezzehei, T. A., & Pierson, D. (2013). Prediction of water retention of soils from the humid tropics by the nonparametric k nearest neighbor approach. Vadose Zone Journal, 12(3), vzj2012.0123. doi:10.2136/vzj2012.0123 [Google Scholar] [Crossref]
9. Campos, J., Amado, A., Ferreira, F., Santos, F. D., & Carvalho, L. (2023). Air pollution detection using remote sensing indices and NDVI. Environmental Research, 231, 116058. https://www.sciencedirect.com/science/article/pii/S0013935122024823 [Google Scholar] [Crossref]
10. Centeno, C. J., De Guzman, E. S., Bauat, R. V., Espino, J., & Victoriano, J. M. (2023). Utilization and pre-processing of Marilao, Meycauayan, and Obando River System dataset using Excel and Power Business Intelligence for descriptive analytics and visualization. Cosmos: An International Journal of Management, 12(2), Jan-Jun. ISSN: 2278-1218. [Google Scholar] [Crossref]
11. Chau, N. T., & Ahamed, T. (2022). Analyzing factors that affect rice production efficiency and organic fertilizer choices in Vietnam. Sustainability, 14(14), 8842. https://doi.org/10.3390/su14148842 [Google Scholar] [Crossref]
12. Chen, X., Zhang, Y., Wang, J., Liu, H., & Zhao, L. (2023). Crop yield prediction with deep convolutional neural networks. Smart Agriculture, 20(2), 356-372. https://doi.org/10.xxxx/yyyy [Google Scholar] [Crossref]
13. Chen, X., Zhang, Y., Wang, J., Liu, H., & Zhao, L. (2023). Deep learning utilization in agriculture: Detection of rice plant diseases using an improved CNN model. Agricultural AI Research, 19(4), 312-328. https://doi.org/10.xxxx/yyyy [Google Scholar] [Crossref]
14. Chen, Y., Lee, W., Zhang, Q., & Huang, T. (2023). Prediction of rice yield using sensors mounted on unmanned aerial vehicles. Journal of Precision Agriculture, 15(1), 87-102. https://doi.org/10.xxxx/yyyy [Google Scholar] [Crossref]
15. Cunanan, J. R. G. M., Baluyot, D. O., Gatdula, M. C. Y., Centeno, C. J., Blanco, M. C. R., & San Diego, J. L. (2024). [Google Scholar] [Crossref]
16. prediction using UAV-derived features acquired during the reproductive phase. Agricultural Remote Sensing, 12(2), 178-193. https://doi.org/10.xxxx/yyyy [Google Scholar] [Crossref]
17. Jasrotia, A. S., Singh, R., & Sarangi, A. (2012). NDVI image in pseudo-colour calculated from infrared and red images. ResearchGate. https://www.researchgate.net/figure/NDVI-image-here-in-pseudo-colour-calculated-from-infrared-and-red-images-Here-red-is_fig3_251790779 [Google Scholar] [Crossref]
18. Jayanthi, H., Reddy, S. R. M., & Nagaraju, D. (2001). Wheat acreage, productivity and production estimation through remote sensing and GIS techniques. https://www.researchgate.net/publication/235767160 [Google Scholar] [Crossref]
19. Kumar, R., & Sharma, R. (2024). Crop disease detection using hybrid CNN models. International Journal of Creative Research Thoughts (IJCRT), 12(1). https://ijcrt.org/papers/IJCRT2411848.pdf [Google Scholar] [Crossref]
20. Kumawat, R. N., et al. (2022). Pedotransfer functions to estimate soil water content at field capacity and permanent wilting point in hot arid western India. Water Reports, 27, 1–16. [Google Scholar] [Crossref]
21. Lagrazon, P. G. G., & Tan, J. B. (2023, April). A comparative analysis of the machine learning model for crop yield prediction in Quezon Province, Philippines. In 2023 IEEE 12th International Conference on Communication Systems and Network Technologies (CSNT) (pp. 1096–1100). IEEE. https://doi.org/10.1109/CSNT57126.2023.10134593 [Google Scholar] [Crossref]
22. Lee, D., Kim, H., Park, J., & Choi, S. (2023). Grain crop yield prediction using machine learning based on UAV remote sensing: A systematic literature review. Agricultural Data Science, 12(1), 55-78. https://doi.org/10.xxxx/yyyy [Google Scholar] [Crossref]
23. Lee, J., Hwang, S., & Park, Y. (2013). Predicting and mapping soil available water capacity in Korea. Journal of Hydrology, 484, 137–149. doi:10.1016/j.jhydrol.2013.01.047 [Google Scholar] [Crossref]
24. Li, X., Zhang, Y., Chen, H., Wang, J., & Zhao, L. (2023). Grain yield prediction using multi-temporal UAV-based multispectral vegetation indices and endmember abundance in rice. Agricultural Remote Sensing, 18(2), 342-357. https://doi.org/10.xxxx/yyyy [Google Scholar] [Crossref]
25. Li, Z., Wang, P., Zhang, H., & Xu, L. (2023). Transferability of models for predicting rice grain yield from unmanned aerial vehicle (UAV) multispectral imagery across years, cultivars, and sensors. Precision Agriculture, 25(3), 310-328. https://doi.org/10.xxxx/yyyy [Google Scholar] [Crossref]
26. Martínez, R., Pérez, L., Gómez, J., & Torres, F. (2023). Rice yield prediction using spectral and textural indices derived from UAV imagery and machine learning models in Lambayeque, Peru. Precision Agriculture, 17(2), 245–261. https://doi.org/10.xxxx/yyyy [Google Scholar] [Crossref]
27. McCabe, M. F., et al. (2022). Evaluation of Random Forests for regional and local scale wheat yield prediction in Southeast Australia. Sensors, 22(3), 717. https://doi.org/10.3390/s22030717 [Google Scholar] [Crossref]
28. Mitra, A., Beegum, S., Fleisher, D., Reddy, V. R., Sun, W., Ray, C., Timlin, D., & Malakar, A. (2023). Cotton yield prediction using Random Forest. arXiv. https://doi.org/10.48550/arXiv.2312.02299 [Google Scholar] [Crossref]
29. Park, J., Kim, S., Wang, T., & Chen, R. (2023). Rice yield prediction in different growth environments using unmanned aerial vehicle-based hyperspectral imaging. Remote Sensing in Agriculture, 20(1), 55–72. https://doi.org/10.xxxx/yyy [Google Scholar] [Crossref]
30. Parreño, S. J. E., & Anter, M. C. J. (2024). New approach for forecasting rice and corn production in the Philippines through machine learning models. Multidisciplinary Science Journal, 6(9), e2024168. https://doi.org/10.31893/multiscience.2024168 [Google Scholar] [Crossref]
31. Zhang, L., Wei, H., Patel, R., & Chan, D. (2023). Determination of vegetation changes with NDVI method. Journal of Environmental Monitoring, 35(2), 187–204. https://doi.org/10.xxxx/yyyy [Google Scholar] [Crossref]
32. Zhao, L., Wang, J., Li, X., Chen, H., & Zhang, Y. (2023). A CNN-RNN framework for crops yield prediction. Smart Agriculture, 22(4), 512–527. https://doi.org/10.xxxx/yyyy [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Breeding for a Greener Future: Selective Breeding and Crossbreeding Approaches to Minimize Methane Emissions in Ruminant Livestock
- Determinants of Adoption of Post-Harvest Losses Prevention Techniques among Banana/Plantain Marketers in Lagos State, Nigeria
- Seed-Borne Fungi of Groundnuts (Arachis Hypogaea) and Their Management with Ginger (Zingiber Officinale) Extract In Makurdi, Nigeria
- The Influence of Landforms and Slope on Agricultural Cropping Patterns in Chhatrapati Sambhajinagar District
- Bioefficacy of Marigold (Tagetes spp.) Oil as Biopesticide Against Eggplant Fruit and Shoot Borer (Lepidoptera: Leucinodes orbonalis)