Bioefficacy of Marigold (Tagetes spp.) Oil as Biopesticide Against Eggplant Fruit and Shoot Borer (Lepidoptera: Leucinodes orbonalis)
Authors
Monkayo College of Arts, Sciences, and Technology L.S. Sarmiento St., Poblacion, Monkayo, Davao de Oro (Philippines)
Monkayo College of Arts, Sciences, and Technology L.S. Sarmiento St., Poblacion, Monkayo, Davao de Oro (Philippines)
Monkayo College of Arts, Sciences, and Technology L.S. Sarmiento St., Poblacion, Monkayo, Davao de Oro (Philippines)
Article Information
DOI: 10.51244/IJRSI.2025.120800293
Subject Category: Agriculture
Volume/Issue: 12/9 | Page No: 3238-3249
Publication Timeline
Submitted: 2025-09-04
Accepted: 2025-09-10
Published: 2025-10-06
Abstract
Eggplant (Solanum melongena) is one of the most important vegetable crops in the Philippines, commonly grown in backyard and commercial farms. It is widely consumed by most Filipinos due to its nutritive value. However, its production is often affected by the eggplant fruit and shoot borer or EFSB (Leucinodes orbonalis), a pest known to cause serious damage and yield loss. Local farmers commonly address this pest problem with synthetic insecticides, however, excessive reliance on those synthetic chemicals poses environmental and health risks. Hence, this study assessed marigold (Tagetes spp.), a promising repellant plant with insecticidal potential, as a botanical-based biopesticide alternative for managing L. orbonalis larvae. This study investigates the efficacy of non-phytotoxic marigold plant in oil-emulsion concentration to EFSB mortality. The experiment was done in Completely Randomized Design (CRD), involving two experiments: a phytotoxicity experiment to test if the marigold oil-emulsion would harm the young eggplant leaves; and a laboratory bioassay to observe the larval mortality of EFSB treated with different marigold oil-emulsion concentrations (0.1%, 0.3%, and 0.5%) at 1, 2, and 3 hour/s after treatment (HAT). The study showed that the concentrations used were non-phytotoxic as observed on the marigold oil-emulsion solution-treated young leaves. Furthermore, the insect mortality experiment showed that the higher the concentration, the higher the larval mortality, with 0.5% treatment reaching 88.89% mortality in 3 HAT, which was statistically comparable to the chemical control with 100% mortality. Based on these results, non-phytotoxic marigold oil-emulsion at 0.5% is a potential option for managing L. orbonalis in eggplant, however, further study under field condition is needed before recommendation as regular use.
Keywords
Botanical biopesticide, marigold oil, phytotoxicity, EFSB, Monkayo
Downloads
References
1. Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265–267. https://doi.org/10.1093/jee/18.2.26 [Google Scholar] [Crossref]
2. Almeida, H. H. S., Fernandes, I. P., Amaral, J. S., Rodrigues, A. E., & Barreiro, M.-F. (2024). Unlocking the Potential of Hydrosols: Transforming Essential Oil Byproducts into Valuable Resources. Molecules, 29(19), 4660. https://doi.org/10.3390/molecules29194660 [Google Scholar] [Crossref]
3. Bakshi, L., & Ghosh, R. (2022). Marigold Biopesticide as an Alternative to Conventional Chemical Pesticides. DOI: 10.55218/JASR.202213503 [Google Scholar] [Crossref]
4. Bhattacharyya, M. (2017). Use of marigold (Tagetes sp.) for the successful control of nematodes in agriculture. The Pharma Innovation Journal, 6, 01-03. [Google Scholar] [Crossref]
5. Bi, G., Evans, W.B., Spiers, J.M., & Witcher, A. (2010). Effects of Organic and Inorganic Fertilizers on Marigold Growth and Flowering. Hortscience, 45, 1373-1377. DOI: 10.21273/HORTSCI.45.9.1373 [Google Scholar] [Crossref]
6. Blassioli-Moraes, M. C., Venzon, M., Silveira, L. C. P., Gontijo, L. M., Togni, P. H. B., Sujii, E. R., ... & Birkett, M. (2022). Companion and smart plants: scientific background to promote conservation biological control. Neotropical Entomology, 51(2), 171-187. DOI: 10.1007/s13744-021-00939-2 [Google Scholar] [Crossref]
7. Bonato, M., Martin, E. A., Cord, A. F., Seppelt, R., Beckmann, M., & Strauch, M. (2023). Applying generic landscape-scale models of natural pest control to real data: Associations between crops, pests and biocontrol agents make the difference. Agriculture, Ecosystems & Environment, 342, 108215. [Google Scholar] [Crossref]
8. Calumpang, S. M. F., & Ohsawa, K. (2015). Repellency of marigold, Tagetes erecta L. (Asteraceae) volatile organic chemicals to eggplant fruit and shoot borer, Leucinodes orbonalis Guenee (Lepidoptera: Crambidae). Journal of the International Society for Southeast Asian Agricultural Sciences, 21(2), 119–128. DOI: 10.5555/20163105348 [Google Scholar] [Crossref]
9. Cerpa, M.G., Mato, R.B., & Cocero, M.J. (2008). Modeling steam distillation of essential oils: Application to lavandin super oil. Aiche Journal, 54, 909-917. [Google Scholar] [Crossref]
10. Fabrick, J. A., Yool, A. J., & Spurgeon, D. W. (2020). Insecticidal activity of marigold Tagetes patula plants and foliar oil-emulsion against the hemipteran pests, Lygus hesperus and Bemisia tabaci. PLoS One, 15(5), e0233511. DOI: 10.1371/journal.pone.0233511 [Google Scholar] [Crossref]
11. Gomez, K. A., & Gomez, A. A. (1984). Statistical Procedures for Agricultural Research (2nd ed.). Wiley. [Google Scholar] [Crossref]
12. Gupta, R., Yadav, A., & Garg, V. K. (2014). Influence of vermicompost application in potting media on growth and flowering of marigold crop. International Journal of Recycling of Organic Waste in Agriculture, 3, 1-7. [Google Scholar] [Crossref]
13. Hautea, D. M., Taylo, L. D., Masanga, A. P. L., Sison, M. L. J., Narciso, J. O., Quilloy, R. B., ... & Shelton, A. M. (2016). Field performance of Bt eggplants (Solanum melongena L.) in the Philippines: Cry1Ac expression and control of the eggplant fruit and shoot borer (Leucinodes orbonalis Guenée). PLoS One, 11(6), e0157498. DOI: 10.1371/journal.pone.0157498 [Google Scholar] [Crossref]
14. Horgan, F. G., Mundaca, E. A., Hadi, B. A., & Crisol-Martínez, E. (2023). Diversified rice farms with vegetable plots and flower strips are associated with fewer pesticide applications in the Philippines. Insects, 14(10), 778. [Google Scholar] [Crossref]
15. Iamba, K. (2021). Biological role of marigold (Tagetes erecta L.) in habitat manipulation and sustenance of natural enemy populations in upland rice. Arthropods, 10(3), 66. [Google Scholar] [Crossref]
16. Isman, M. B. (2020). Botanical insecticides in the twenty‐first century—Fulfilling their promise? Insects, 11(8), 470. https://doi.org/10.3390/insects11080470 [Google Scholar] [Crossref]
17. Jakubowska, M., Dobosz, R., Szabelska-Beręsewicz, A., Zyprych-Walczak, J., Kowalska, J., & Tratwal, A. (2023). Effects of water-based extracts of peppermint (Mentha piperita L.) and French marigold (T agetes patula L.) on the transformation of larvae and nymphs of two-spotted spider mite (Tetranychus urticae Koch). Journal of Plant Protection Research, 474-480. [Google Scholar] [Crossref]
18. Kannan, K., Raju, P., Keerthy, B.N., Rajagopal, A., & Sabat, S. (2024). Biopesticide effect on crops for the bioactive components extracted from Tagetes erecta and Tagetes patula. Discover Agriculture. [Google Scholar] [Crossref]
19. Kour, S., & Riat, A. K. (2021). Control of mosquitoes with the help of plant based chemicals of Tagetes and Mentha arvensis: A review. Plant Archives, 21(1), 2313-16. [Google Scholar] [Crossref]
20. Lu, T., Lei, C., Gao, M., Lv, L., Zhang, C., Qian, H., & Tang, T. (2024). A risk entropy approach for linking pesticides and soil bacterial communities. Journal of Hazardous Materials, 469, 133970. https://doi.org/10.1016/j.jhazmat.2024.133970 [Google Scholar] [Crossref]
21. Mmbone, s. (2016). Efficacy of Tagetes minuta L AND Tephrosia vogelii Hook crude leaf extracts on Tetranychus urticae Koch AND Aphis fabae Scopoli (Doctoral dissertation). [Google Scholar] [Crossref]
22. Mordalski, R., Buchwald, W., Bilińska, E., Zalińska, H., & Kucharski, W.A. (her). Wpływ metod odchwaszczania plantacji na plonowanie i zawartość olejku w kwiatostanach wybranych odmian nagietka lekarskiego (Calendula officinalis L.). [Google Scholar] [Crossref]
23. Naeem, M. Y., & Ugur, S. (2019). Nutritional content and health benefits of eggplant. Turkish Journal of Agriculture-Food Science and Technology, 7, 31-36. [Google Scholar] [Crossref]
24. Nayak, S. B., Rao, K. S., & Mekala, S. (2021). Management of important insect-pest of eggplant (Solanum melongena l.). Solanum Melongena: Production, Cultivation and Nutrition, 300-322. [Google Scholar] [Crossref]
25. Netam, V., & Shewale, V. (2022). Study of Biology of Leucinodes orbonalis Guenee (EFSB) Under Laboratory Condition Fed on Two Different Diets. Zeichen Journal ISSN No: 0932-4747Volume 8, Issue 06, 2022 Page No. 834-835. https://balwantcollege.edu.in/pdf/research/105273401_ [Google Scholar] [Crossref]
26. Parklak, W., Ounjaijean, S., Kulprachakarn, K., & Boonyapranai, K. (2023). In vitro α-amylase and α-glucosidase inhibitory effects, antioxidant activities, and lutein content of nine different cultivars of marigold flowers (Tagetes spp.). Molecules, 28(8), 3314. https://doi.org/10.3390/molecules28083314 [Google Scholar] [Crossref]
27. Pavani, M., Madhavi, M., Mahesh, L., & Mayookha, L. (2023). Larvicidal potential of methanolic leaf extracts of Citrus limon and Aloe vera against brinjal shoot and fruit borer, Leucinodes orbonalis Guenee. International Journal of Zoology Studies, 8(3), 17–21. https://www.researchgate.net/profile/Mayookha-Lingakari/publication/372474187_ [Google Scholar] [Crossref]
28. Philippine Statistics Authority. (2024, August 9). Highlights of eggplant production – Ilocos Region, 2023 (Reference No. 2024-038) [PDF]. PSA Region I. Retrieved September 4, 2025, from PSA Region I https://rsso01.psa.gov.ph/content/highlights-eggplant-production-ilocos-region-2023 [Google Scholar] [Crossref]
29. Philippine Statistics Authority. Regional Statistical Services Office I. (2023, June 15). Highlights on eggplant production, Ilocos Region, 2022 (Special Release No. 2023-039). Philippine Statistics Authority. https://rsso01.psa.gov.ph/content/highlights-eggplant-production-ilocos-region-2022 [Google Scholar] [Crossref]
30. Qasim, M., Qureshi, A. A., Akhtar, M. F., & Altaf, M. Z. (2023). Mitigation of pest pressure in crops by the foliar application of vegetable extract and cultivation of marigold as a companion crop: A review. Review of Agricultural and Environmental Studies-Revue d'Etudes en Agriculture et Environnement (RAEStud), 6(1), 11-6. https://doi.org/10.22004/ag.econ.358960 [Google Scholar] [Crossref]
31. Quamruzzaman, A. K. M. (2021). The first gm crop in bangladesh–bt eggplant. European Journal of Agriculture and Food Sciences, 3(2), 45-55. https://doi.org/10.24018/ejfood.2021.3.2.237 [Google Scholar] [Crossref]
32. Rajeswara Rao, B. R., Kaul, P. N., Bhattacharya, A. K., Rajput, D. K., Syamasundar, K. V., & Ramesh, S. (2006). Comparative Chemical Composition of Steam-Distilled and Water-Soluble Essential Oils of South American Marigold (Tagetes minuta L.). Journal of Essential Oil Research, 18(6), 622–626. [Google Scholar] [Crossref]
33. https://doi.org/10.1080/10412905.2006.9699184 [Google Scholar] [Crossref]
34. Rao, V.P., & Pandey, D. (2007). Extraction of essential oil and its applications. Department of Chemical Engineering National Institute of Technology Rourkela-769008 Orissa http://ethesis.nitrkl.ac.in/4292/1/Extraction_of_Essential.pdf [Google Scholar] [Crossref]
35. Rathod, P., Vala, M., & Maitreya, B. (2021). Drying Techniques of Some Selected Ornamental Flowers-A Reviews. EPRA International Journal of Research & Development (IJRD). https://doi.org/10.36713/epra6775 [Google Scholar] [Crossref]
36. Sahoo, P.A., Kumar, K.S., Prof., R.G., Mrs, Sahoo, A., & Agarwal, S.K. (2010). Extraction of essential oil using steam distillation. Department of Chemical Engineering National Institute of Technology Rourkela http://ethesis.nitrkl.ac.in/1949/1/satish_final_thesis.pdf [Google Scholar] [Crossref]
37. Salinas-Sánchez, D. O., Aldana-Llanos, L., Valdés-Estrada, M. E., Gutiérrez-Ochoa, M., Valladares-Cisneros, G., & Rodríguez-Flores, E. (2012). Insecticidal activity of Tagetes erecta oil-emulsion on Spodoptera frugiperda (Lepidoptera: Noctuidae). Florida Entomologist, 95(2), 428–432. https://doi.org/10.1653/024.095.0225 [Google Scholar] [Crossref]
38. Srinivasan, R. (2008). Integrated pest management for eggplant fruit and shoot borer (Leucinodes orbonalis) in south and southeast Asia: past, present and future. Journal of Biopesticides, 1(2), 105-112. https://www.researchgate.net/profile/Srinivasan-Ramasamy-3/publication/238693090_ [Google Scholar] [Crossref]
39. Srivastava, N., Morey, R., & Khandagle, A. (2023). Larvicidal, Ovicidal, Ovipositional deterrent and adulticidal activity of Tagetes erecta and Cymbopogon nardus against Culex quinquefasciatus and their GCMS analysis. Ecology, Environment & Conservation, 29(1), 466-474. [Google Scholar] [Crossref]
40. Taye, W., Mekete, T., & Addis, T. (2012). Evaluation of the effect of different concentrations of organic amendments and botanical oil-emulsion on the mortality and hatching of Meloidogyne javanica. Journal of Plant Protection Research, 52(4), 452–457. [Google Scholar] [Crossref]
41. Tudora, C., Nenciu, F., Muscalu, A., Burnichi, F., Gatea, F., Boiu-Sicuia, O. A., & Israel-Roming, F. (2024). Pesticidal potential of essential oil obtained from a new variety of marigold (Tagetes patula L., fam. Asteraceae). Applied Sciences, 14(8), 3159. DOI: 10.3390/app14083159 [Google Scholar] [Crossref]
42. Ullah, M., Ullah, F., Khan, M. A., Ahmad, S., Jamil, M., Sardar, S., ... & Ahmed, N. (2022). Efficacy of various natural plant extracts and the synthetic insecticide cypermethrin 25EC against Leucinodes orbonalis and their impact on natural enemies in brinjal crop. International Journal of Tropical Insect Science, 42(1), 173-182. [Google Scholar] [Crossref]
43. Valdez-Aguilar, L.A., Grieve, C.M., & Poss, J.A. (2009). Salinity and Alkaline pH in Irrigation Water Affect Marigold Plants: I. Growth and Shoot Dry Weight Partitioning. Hortscience, 44, 1719-1725. [Google Scholar] [Crossref]
44. Vannathara, A., Bhaskar, H., Unniampurath, S., & Korasseril Babu, D. (2023). Acaricidal effects of Tagetes minuta L. (Asteraceae) against Tetranychus truncatus Ehara (Prostigmata: Tetranychidae). International Journal of Acarology, 49(5-6), 325-333. [Google Scholar] [Crossref]
45. Walia, S., Bhatt, V., & Kumar, R. (2020). Influence of Drying Processing on Essential Oil Yield and Composition of Wild Marigold (Tagetes minuta L.) in the Western Himalayas. aJournal of Essential Oil Bearing Plants, 23, 686 - 696. [Google Scholar] [Crossref]
46. Yang, N., Wang, X., Zheng, F., & Chen, Y. (2017). The response of marigold (Tagetes erecta Linn.) to ozone: impacts on plant growth and leaf physiology. Ecotoxicology, 26(1), 151-164. https://doi.org/10.1007/s10646-016-1750-7 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Breeding for a Greener Future: Selective Breeding and Crossbreeding Approaches to Minimize Methane Emissions in Ruminant Livestock
- Determinants of Adoption of Post-Harvest Losses Prevention Techniques among Banana/Plantain Marketers in Lagos State, Nigeria
- Enhancing Rice Yield Prediction Using UAV-Based Multispectral Imaging and Machine Learning Algorithms
- Seed-Borne Fungi of Groundnuts (Arachis Hypogaea) and Their Management with Ginger (Zingiber Officinale) Extract In Makurdi, Nigeria
- The Influence of Landforms and Slope on Agricultural Cropping Patterns in Chhatrapati Sambhajinagar District