"The Interplay Between Nutritional Deficiencies and Susceptibility to Mycotoxicosis: Implications for Public Health and Food Safety"
Authors
Department of Biochemistry, Faculty of Biosciences, Federal University Wukari, Taraba (Nigeria)
Ugochukwu Cyrilgentle Okorocha
Department of Public health, Faculty of Health Sciences, Claretian University of Nigeria Maryland Nekede Owerri Imo State. (Nigeria)
School of Health Sciences, Bangor University UK (Nigeria)
Department of Medical Biochemistry, College of Health Sciences, Delta State University (Nigeria)
Department of Nursing, Faculty- College of Nursing, Nnamdi Azikiwe University Teaching Hospital, Anambra State Nigeria. (Nigeria)
Department of Public Health, Faculty of Basic Medical and Health Sciences, Thomas Adewumi University Oko, Kwara State (Nigeria)
Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, University of Jos (Nigeria)
Article Information
DOI: 10.51244/IJRSI.2025.1210000242
Subject Category: Biochemistry
Volume/Issue: 12/10 | Page No: 2804-2825
Publication Timeline
Submitted: 2025-10-22
Accepted: 2025-10-28
Published: 2025-11-17
Abstract
Mycotoxins are pervasive contaminants of staple crops in tropical and subtropical regions and pose a persistent threat to food safety and public health, particularly among nutritionally vulnerable communities. This systematic review synthesizes evidence published between 2020 and 2025 on the bidirectional relationship between nutritional deficiencies and susceptibility to mycotoxicosis, integrating mechanistic, observational, and intervention studies to provide an integrated perspective. We searched PubMed, Scopus, and Web of Science and screened studies that examined nutrient status, absorption, detoxification, immune function, and health outcomes associated with aflatoxins, fumonisins, ochratoxins, trichothecenes, and zearalenone. Results identify several convergent mechanisms by which poor nutritional status amplifies mycotoxin harm. Protein energy deficiency and inadequate micronutrients such as vitamins A, C, E, folate, selenium, zinc, and iron impair hepatic Phase I and Phase II detoxification enzymes, reduce antioxidant defenses, and weaken immune competence. Conversely, common mycotoxins damage intestinal architecture and downregulate nutrient transporters, creating malabsorption syndromes that perpetuate nutrient loss. This reciprocal interaction generates a toxico nutritional spiral that is most evident among children, pregnant women, and immunocompromised adults in low income settings, with documented consequences including stunting, anemia, and adverse birth outcomes. The review highlights the predictive value of nutritional biomarkers such as serum retinol, selenium dependent glutathione peroxidase activity, plasma folate, serum zinc, and urinary oxidative damage markers to stratify vulnerability and monitor interventions. Evidence for mitigation supports integrated approaches combining agricultural measures to reduce contamination, biofortification, targeted micronutrient supplementation, improved post-harvest storage, culturally appropriate food processing, and gut focused strategies such as probiotics. While heterogeneity in study design limited meta-analysis, mechanistic findings from in vitro, animal, and human studies converge to justify context specific trials of combined nutrition and food safety interventions. We conclude that reducing the burden of mycotoxicosis requires coordinated multisectoral policies that link nutrition programs with crop management and surveillance, and research that advances biomarker validation, omics based mechanistic discovery, and scalable delivery models. Implementing these strategies can disrupt the toxico nutritional spiral, protect vulnerable populations, and strengthen food system resilience against a changing climate. Policy makers, researchers, and communities must collaborate to translate evidence into action.
Keywords
Mycotoxicosis; Nutritional Deficiency; Detoxification Pathways; Toxico-Nutritional Spiral; Food Safety Interventions; Biofortification; Micronutrient Biomarkers
Downloads
References
1. Al-Jaal BA, Jaganjac M, Barcaru A, Horvatovich P, Latiff A. Aflatoxin, fumonisin, ochratoxin, zearalenone and deoxynivalenol biomarkers in human biological fluids: A systematic literature review, 2001–2018. Food Chem Toxicol. 2019; 129:211–228. https://doi.org/10.1016/j.fct.2019.04.047 [Google Scholar] [Crossref]
2. Smith LE, Prendergast AJ, Turner PC, Humphrey JH, Stoltzfus RJ.Aflatoxin exposure during pregnancy, maternal anemia, and adverse birth outcomes. Am J Trop Med Hyg. 2017;96(4):770–776. https://doi.org/10.4269/ajtmh.16-0730 [Google Scholar] [Crossref]
3. Marchese S, Polo A, Ariano A, Velotto S, Costantini S, Severino L. Aflatoxin B1 and M1: Biological properties and their involvement in cancer development. Toxins (Basel). 2018;10(6):214. https://doi.org/10.3390/toxins10060214 [Google Scholar] [Crossref]
4. Chen C, Mitchell NJ, Gratz J, Houpt ER, Gong YY, Egner PA, et al. Exposure to aflatoxin and fumonisin in children at risk for growth impairment in rural Tanzania. Environ Int. 2018;115:29–37. https://doi.org/10.1016/j.envint.2018.03.001 [Google Scholar] [Crossref]
5. Sipos P, Peles F, Brassó DL, Béri B, Pusztahelyi T, Pócsi I, Győri Z. Physical and chemical methods for reduction in aflatoxin content of feed and food. Toxins (Basel). 2021;13(3):204. https://doi.org/10.3390/toxins13030204 [Google Scholar] [Crossref]
6. Liu S, Jiang S, Yao Z, Liu M. Aflatoxin detection technologies: recent advances and future prospects. Environ Sci Pollut Res Int. 2023;30(66):79627–79653. https://doi.org/10.1007/s11356-023-28110-x [Google Scholar] [Crossref]
7. Casu A, Camardo Leggieri M, Toscano P, Battilani P. Changing climate, shifting mycotoxins: a comprehensive review of climate change impact on mycotoxin contamination. Compr Rev Food Sci Food Saf. 2024;23(2):e13323. https://doi.org/10.1111/1541-4337.13323 [Google Scholar] [Crossref]
8. Kos J, Radić B, Lešić T, Anić M, Jovanov P, Šarić B, Pleadin J. Climate change and mycotoxins trends in Serbia and Croatia: a 15‑year review. Foods. 2024;13(9):1391. https://doi.org/10.3390/foods13091391 [Google Scholar] [Crossref]
9. Wang X, You SH, Lien KW, Ling MP. Using disease‑burden methods to evaluate strategies for reduction of aflatoxin exposure in peanuts. Toxicol Lett. 2019;314:75–81. https://doi.org/10.1016/j.toxlet.2019.07.006 [Google Scholar] [Crossref]
10. Kos J, Anić M, Radić B, Zadravec M, Hajnal EJ, Pleadin J. Climate change—A global threat resulting in increasing mycotoxin occurrence. Foods. 2023;12(14):2704. https://doi.org/10.3390/foods12142704 [Google Scholar] [Crossref]
11. Ge L, Agrawal R, Singer M, Xie W, Yu Z, Fan J, et al. Leveraging artificial intelligence to enhance systematic reviews in health research: advanced tools and challenges. Syst Rev. 2024;13:269. https://doi.org/10.1186/s13643-024-02682-2 [Google Scholar] [Crossref]
12. Sandner E, Gütl C, Jakovljevic I, Wagner A. Screening automation in systematic reviews: analysis of tools and methods using machine learning support. Stud Health Technol Inform. 2024;340:123–8. https://doi.org/10.3233/SHTI240034 [Google Scholar] [Crossref]
13. Yuan H, Yu K, Xie F, Liu M, Sun S. Automated machine learning with interpretation: a systematic review of methodologies and applications in healthcare. Med Adv. 2024;2(3):205–37. https://doi.org/10.1002/med4.75 [Google Scholar] [Crossref]
14. Ofori-Boateng R, Aceves-Martins M, Wiratunga N, Zargaran E, Han X, Benitez-Pena CE, et al. Towards the automation of systematic reviews using natural language processing, machine learning, and deep learning: a comprehensive review. Artif Intell Rev. 2024;57:200. https://doi.org/10.1007/s10462-024-10844-w [Google Scholar] [Crossref]
15. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. J Clin Epidemiol. 2021;134:178–89. https://doi.org/10.1016/j.jclinepi.2021.03.001 [Google Scholar] [Crossref]
16. Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:n160. https://doi.org/10.1136/bmj.n160 [Google Scholar] [Crossref]
17. Heinen L, Goossen K, Lunny C, Hirt J, Puljak L, Pieper D. The optimal approach for retrieving systematic reviews was achieved when searching MEDLINE and Epistemonikos in addition to reference checking: a methodological validation study. BMC Med Res Methodol. 2024;24:271. https://doi.org/10.1186/s12874-024-02384-2 [Google Scholar] [Crossref]
18. Khalid S, Almutairi S, Namoun A, Khan J, Khattak HA, Shah H. Comprehensive review of academic search systems: evolution, analysis, and future research directions. Soc Netw Anal Min. 2025;15:66. https://doi.org/10.1007/s13278-025-01476-1 [Google Scholar] [Crossref]
19. Rethlefsen ML, Page MJ. PRISMA 2020 and PRISMA-S: common questions on tracking records and the flow diagram. J Med Libr Assoc. 2022;110(2):253–7. https://doi.org/10.5195/jmla.2022.1449 [Google Scholar] [Crossref]
20. Moher D, Beller EM, Barrowman NJ, Campbell L, Clark J, Devereaux PJ, et al. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1. https://doi.org/10.1186/2046-4053-4-1 [Google Scholar] [Crossref]
21. Yao HD, Du Q, Yao LL, Zhang ZW, Xu SW.Roles of oxidative stress and endoplasmic reticulum stress in selenium deficiency-induced apoptosis in chicken liver. Biometals. 2015;28(2):255–65. https://doi.org/10.1007/s10534-014-9819-3 [Google Scholar] [Crossref]
22. Lee JG, Lee SE, Lee SH, Kim JH, Kim DJ, Kim JY, et al. Selenium as an antioxidant: roles and clinical applications in critically ill and trauma patients. Antioxidants (Basel). 2025;14(3):294. https://doi.org/10.3390/antiox14030294 [Google Scholar] [Crossref]
23. Akbari G. Role of zinc supplementation on ischemia/reperfusion injury in various organs. Biol Trace Elem Res. 2020;196:1–9. https://doi.org/10.1007/s12011-019-01892-3 [Google Scholar] [Crossref]
24. Yılmaz S, Kaya E, Karaca A, Kaya Y. Vitamin E attenuates toxicity and oxidative stress induced by aflatoxin in rats. Adv Clin Exp Med. 2017;26(6):907–17. https://doi.org/10.17219/acem/66347 [Google Scholar] [Crossref]
25. Ampong I, Boateng M, Osei-Tutu L, Laar A, Asare GA, Steiner-Asiedu M. Dietary protein insufficiency: an important consideration in fatty liver disease. Br J Nutr. 2020;123(6):601–9. https://doi.org/10.1017/S0007114519003064 [Google Scholar] [Crossref]
26. Mshanga N, Moore S, Kassim N, Martin HD, Auma CI, Gong YY. ssociation between aflatoxin exposure and haemoglobin, zinc, and vitamin A, C, and E levels/status: a systematic review. Nutrients. 2025;17(5):855. https://doi.org/10.3390/nu17050855 [Google Scholar] [Crossref]
27. Faccioli J, Vancan L, Orlandi FS, da Rocha MD, Bordin D, Marchioro TL, et al. Nutrition assessment and management in patients with cirrhosis and cognitive impairment: a comprehensive review. J Clin Med. 2022;11(10):2842. https://doi.org/10.3390/jcm11102842 [Google Scholar] [Crossref]
28. Toriyama K. Pathophysiology of hepatic encephalopathy: therapeutic interventions and strategies. J Hepatol Gastroint Dis. 2024;10(2):297. https://doi.org/10.35248/2475-3181.24.10.297 [Google Scholar] [Crossref]
29. Khoi CS, Chen JH, Lin TY, Chiang CK, Hung KY. Ochratoxin A-induced nephrotoxicity: up-to-date evidence. Int J Mol Sci. 2021;22(20):11237. https://doi.org/10.3390/ijms222011237 [Google Scholar] [Crossref]
30. Huang Z, Zhong H, Li T, Wang Z, Chen X, Zou T, et al. Selenomethionine alleviates deoxynivalenol-induced oxidative injury in porcine intestinal epithelial cells independent of MAPK pathway regulation. Antioxidants (Basel). 2024;13(3):356. https://doi.org/10.3390/antiox13030356 [Google Scholar] [Crossref]
31. Mshanga N, Kassim N, Martin HD, Auma CI, Gong YY. A cross-sectional association between serum aflatoxin and micronutrient status among children aged 6–24 months in rural Tanzania. Matern Child Nutr. 2025;21(1):e70068. https://doi.org/10.1111/mcn.70068 [Google Scholar] [Crossref]
32. Wong CP, Ho E, Zinc R. Effects of zinc status on age-related T cell dysfunction and chronic inflammation. Biometals. 2021;34(2):291–301. https://doi.org/10.1007/s10534-020-00279-5 [Google Scholar] [Crossref]
33. Sun Y, Zhou J, Zhang X, Wang Y, Wang Q. Review on the health-promoting effect of adequate selenium status. Front Nutr. 2023; 10:1136458. https://doi.org/10.3389/fnut.2023.1136458 [Google Scholar] [Crossref]
34. Li Q, Chan H. Vitamin D and skin disorders: bridging molecular insights to clinical innovations. Mol Med. 2025; 31:259. https://doi.org/10.1186/s10020-025-01311-5 [Google Scholar] [Crossref]
35. Yan H, Ge J, Gao H, Pan Y, Hao Y, Li J. Melatonin attenuates AFB1-induced cardiotoxicity via the NLRP3 signalling pathway. J Int Med Res. 2020;48(10):300060520952656. https://doi.org/10.1177/0300060520952656 [Google Scholar] [Crossref]
36. Jobe MC, Rajendran R, Bhunia RK, Ghanta R, Ramesh D, Anand T, et al. Pathological role of oxidative stress in aflatoxin-induced toxicity in different experimental models and protective effect of phytochemicals: a review. Molecules. 2023;28(14):5369. https://doi.org/10.3390/molecules28145369 [Google Scholar] [Crossref]
37. Schulz MT, Rink L. Zinc deficiency as possible link between immunosenescence and age-related diseases. Immun Ageing. 2025;22(1):19. https://doi.org/10.1186/s12979-025-00511-1 [Google Scholar] [Crossref]
38. Jaff S, Zeraattalab-Motlagh S, Khosroshahi RA, Gubari M, Mohammadi H, Djafarian K. The effect of selenium therapy in critically ill patients: an umbrella review of systematic reviews and meta-analysis of randomized controlled trials. Eur J Med Res. 2023; 28:104. https://doi.org/10.1186/s40001-023-01075-w [Google Scholar] [Crossref]
39. Bishop EL, Ismailova A, White JH. Vitamin D and immune regulation: antibacterial, antiviral, anti-inflammatory. JBMR Plus. 2021;5(1):e10405. https://doi.org/10.1002/jbm4.10405 [Google Scholar] [Crossref]
40. Mehdi Y, Hornick JL, Istasse L, Dufrasne I. Selenium in the environment, metabolism and involvement in body functions. Molecules. 2013;18(3):3292–311. https://doi.org/10.3390/molecules18033292 [Google Scholar] [Crossref]
41. Zhou J, Tang L, Wang JS. Aflatoxin B1 disrupts gut microbial metabolism of fatty acids and bile acids in rats. Toxicol Sci. 2018;164(2):453–64. https://doi.org/10.1093/toxsci/kfy102; [Google Scholar] [Crossref]
42. Tang X, Zeng Y, Xiong K, Li M. Deoxynivalenol induces inflammatory injury and impairs glucose absorption via SGLT1 and GLUT2 downregulation in porcine intestinal epithelial cells. J Anim Sci. 2024;102(4):skae107. https://doi.org/10.1093/jas/skae107 [Google Scholar] [Crossref]
43. Wang Y, Xie J, Zhang H, Li X, Chen Y, Liu Z. Fumonisin B1 disrupts folate metabolism and induces DNA damage in human intestinal epithelial cells. Toxicol Lett. 2021; 343:1–9. https://doi.org/10.1016/j.toxlet.2021.02.005 [Google Scholar] [Crossref]
44. Yuan P, Li H, Wang Q, Zhu S, Zhao X. Zearalenone decreases food intake by disrupting gut‑liver‑hypothalamus axis signaling via bile acids and FXR. J Agric Food Chem. 2024;72(14):8200–13. https://doi.org/10.1021/acs.jafc.4c00421 [Google Scholar] [Crossref]
45. Yang X, Gao Y, Huang S, Li J, Wang L, Zhao G. Ochratoxin A compromises intestinal tight junction proteins through Wnt/Ca²⁺ signaling pathway in mice and Caco‑2 cells. Ecotoxicol Environ Saf. 2021; 224:112637. https://doi.org/10.1016/j.ecoenv.2021.112637 [Google Scholar] [Crossref]
46. Zhou JY, Huang DG, Gao CQ, Chen YL, Li XY, Tang JH. Heat‑stable enterotoxin inhibits intestinal stem cell expansion and disrupts epithelial integrity via Wnt/β-catenin downregulation. Stem Cells. 2021;39(4):482–96. https://doi.org/10.1002/stem.3324 [Google Scholar] [Crossref]
47. Mao J, Li Z, Wang H, Chen F, Zhang X, Xia L, et al. Gut microbiota‑mediated bile acid transformations regulate aflatoxin B1 transport via FXR and CYP8B1 signaling. J Anim Sci Biotechnol. 2025; 16:38. https://doi.org/10.1186/s40104-025-01169-x [Google Scholar] [Crossref]
48. Rotimi OA, Adeyemi OS, Adebayo ET, Ojo AA, Olalekan AO. Aflatoxin M1 exposure alters mitochondrial lipids and oxidative stress in rat liver. Front Pharmacol. 2019;10:467. https://doi.org/10.3389/fphar.2019.00467 [Google Scholar] [Crossref]
49. Ahmad S, Single S, Liu Y, Khaliq A, Huang W, Liu G, et al. Heavy metal exposure dysregulates sphingolipid metabolism and impairs iron homeostasis in human lung tissues. Antioxidants. 2024;13(8):978. https://doi.org/10.3390/antiox13080978 [Google Scholar] [Crossref]
50. Su D, Lu J, Nie C, Wang L, Li X, Zhang Y, et al. Combined effects of acrylamide and ochratoxin A on intestinal barrier function in Caco‑2 cells. Foods. 2023;12(6):1318. https://doi.org/10.3390/foods12061318 [Google Scholar] [Crossref]
51. Ghorbani Nejad B, Mostafaei Z, Balouchi Rezaabad A, Mehravar F, Zarei M, Dehghani A, Raeisi Estabragh MA, Karami‑Mohajeri S, Alizadeh H. Aflatoxin B1 exposure and growth impairment in infants and children: a systematic review and meta‑analysis. BMC Pediatr. 2023;23:614. https://doi.org/10.1186/s12887-023-04275-9 [Google Scholar] [Crossref]
52. McMillan A, Renaud JB, Burgess KMN, Orimadegun AE, Akinyinka OO, Allen SJ, Miller JD, Reid G, Sumarah MW. Aflatoxin exposure in Nigerian children with severe acute malnutrition. Food Chem Toxicol. 2018;111:356–362. https://doi.org/10.1016/j.fct.2017.11.030 [Google Scholar] [Crossref]
53. Stafstrom W, Walker S, Komba E, Kinyua M, Hird H. Modeling maize aflatoxins and fumonisins in a Tanzanian smallholder system: accounting for diverse risk factors improves mycotoxin models. PLoS One. 2025;20(1):e0316457. https://doi.org/10.1371/journal.pone.0316457 [Google Scholar] [Crossref]
54. Gichohi-Wainaina WN, Kimanya M, Muzanila YC, Kumwenda NC, Msere H, Rashidi M, et al. Aflatoxin contamination, exposure among rural smallholder farming Tanzanian mothers and associations with growth among their children. Toxins (Basel). 2023;15(4):257. https://doi.org/10.3390/toxins15040257 [Google Scholar] [Crossref]
55. Rivera‑Núñez Z, Smarr MM, Barr DB, Wolfe CD, Waidyanatha S, Olshan AF. Mycoestrogen exposure during pregnancy: impact of the ABCG2 Q141K variant on birth and placental outcomes. Environ Health Perspect. 2025;133(5):057001. https://doi.org/10.1289/EHP14478 [Google Scholar] [Crossref]
56. Kyei NNA, Boakye D, Awuah RT, Agbenyega T, Moya B. Maternal mycotoxin exposure and adverse pregnancy outcomes: a systematic review. Mycotoxin Res. 2020; 36:243–255. https://doi.org/10.1007/s12550-019-00384-6 [Google Scholar] [Crossref]
57. Hassen JY, Debella A, Eyeberu A, Mussa I. Level of exposure to aflatoxins during pregnancy and its association with adverse birth outcomes in Africa: a meta-analysis. Int Health. 2024;16(6):577–591. https://doi.org/10.1093/inthealth/ihae015 [Google Scholar] [Crossref]
58. Tan T, Li L, Zhang J, Chen Y, Fang H, Li Y, et al. Maternal deoxynivalenol exposure and birth outcomes: a prospective cohort study in China. BMC Med. 2023; 21:328. https://doi.org/10.1186/s12916-023-03011-5 [Google Scholar] [Crossref]
59. Bastos‑Moreira Y, Argaw A, Di Palma G, Dailey‑Chwalibóg T, El‑Hafi J, Ouédraogo LO, Coulibaly M, Savadogo G, Nikièma L. Ochratoxin A status at birth is associated with reduced birth weight and ponderal index in rural Burkina Faso. J Nutr. 2025;155(1):260–9. https://doi.org/10.1016/j.tjnut.2024.10.015 [Google Scholar] [Crossref]
60. Watson S, Chen G, Sylla A, Routledge MN, Gong YY. Dietary exposure to aflatoxin and micronutrient status among young children from Guinea. Mol Nutr Food Res. 2016;60(3):511–518. https://doi.org/10.1002/mnfr.201500382 [Google Scholar] [Crossref]
61. Caudill MA, Gregory JF, Hutson AD, Bailey LB. Folate catabolism in pregnant and nonpregnant women with controlled folate intakes. J Nutr. 1998;128(2):204–208. https://doi.org/10.1093/jn/128.2.204 [Google Scholar] [Crossref]
62. Yayeh T, Jeong HR, Park YS, Moon S, Sur B, Yoo HS, Oh S. Fumonisin B1-induced toxicity was not exacerbated in glutathione peroxidase-1/catalase double knockout mice. Biomol Ther (Seoul). 2021;29(1):52–57. https://doi.org/10.4062/biomolther.2020.062 [Google Scholar] [Crossref]
63. Zhou YB, Si KY, Li HT, Li XC, Meng Y, Liu JM. Trends and influencing factors of plasma folate levels in Chinese women at mid-pregnancy, late pregnancy and lactation periods. Br J Nutr. 2021;126(6):885–891. https://doi.org/10.1017/S0007114520004821 [Google Scholar] [Crossref]
64. Fasullo M. Cellular responses to aflatoxin-associated DNA adducts. In: DNA Repair [Internet]. IntechOpen; 2018. Chapter 64225. https://doi.org/10.5772/intechopen.81763 [Google Scholar] [Crossref]
65. Tam E, Keats EC, Rind F, Das JK, Bhutta ZA. Micronutrient supplementation and fortification interventions on health and development outcomes among children under five in low- and middle-income countries: a systematic review and meta-analysis. Nutrients. 2020;12(2):289. https://doi.org/10.3390/nu12020289 [Google Scholar] [Crossref]
66. Macé K, Aguilar F, Wang JS, Vautravers P, Gómez-Lechón M, Gonzalez FJ, Groopman JD, Harris CC, Wild CP. Aflatoxin B1-induced DNA adduct formation and p53 mutations in CYP450-expressing human liver cell lines. Carcinogenesis. 1997;18(7):1291–1297. https://doi.org/10.1093/carcin/18.7.1291 [Google Scholar] [Crossref]
67. Xu Y, Gong YY, Routledge MN. Aflatoxin exposure assessed by aflatoxin albumin adduct biomarker in populations from six African countries. World Mycotoxin J. 2018;11(3):411–426. https://doi.org/10.3920/WMJ2017.2271 [Google Scholar] [Crossref]
68. Niesser M, Demmelmair H, Weith T, Moretti D, Rauh-Pfeiffer A, van Lipzig M, Rist MJ, Saur M, Fürst P, Koletzko B. Folate catabolites in spot urine as non-invasive biomarkers of folate status during habitual intake and folic acid supplementation. PLoS One. 2013;8(2):e56194. https://doi.org/10.1371/journal.pone.0056194 [Google Scholar] [Crossref]
69. Kövesi B, Kulcsár S, Zándoki E, Szabó-Fodor J, Mézes M, Balogh K, Erdélyi M, Tuboly T, Tóth S, Szabó A. Short-term effects of deoxynivalenol, T-2 toxin, fumonisin B1 or ochratoxin on lipid peroxidation and glutathione redox system and its regulatory genes in common carp liver. Fish Physiol Biochem. 2020;46(6):1921–1932. https://doi.org/10.1007/s10695-020-00845-1 [Google Scholar] [Crossref]
70. Sarıkaya E, Doğan S. Glutathione peroxidase in health and diseases. In: Bagatini MD, editor. Glutathione System and Oxidative Stress in Health and Disease. London: IntechOpen; 2020. https://doi.org/10.5772/intechopen.91009 [Google Scholar] [Crossref]
71. Kachapulula PW, Akello J, Bandyopadhyay R, Cotty PJ. Aflatoxin contamination of groundnut and maize in Zambia: observed and potential concentrations. J Appl Microbiol. 2017;122(6):1471–1482. https://doi.org/10.1111/jam.13448 [Google Scholar] [Crossref]
72. Xia L, Wu H, Saleem AF, Mupere E, Lancioni C, Diallo H, et al. Aflatoxin exposure and mortality in acutely ill children: results from the CHAIN network cohort. BMJ Glob Health. 2025;10(7):e017375. https://doi.org/10.1136/bmjgh-2024-017375 [Google Scholar] [Crossref]
73. Deepthi BV, Somashekaraiah R, Rao KP, Deepa N, Dharanesha NK, Girish KS, Agrawal R, Sreenivasa MY. Lactobacillus plantarum MYS6 ameliorates fumonisin B1-induced hepatorenal damage in broilers. Front Microbiol. 2017; 8:2317. https://doi.org/10.3389/fmicb.2017.02317 [Google Scholar] [Crossref]
74. Agriopoulou S, Stamatelopoulou E, Varzakas T. Advances in occurrence, importance, and mycotoxin control strategies: prevention and detoxification in foods. Foods. 2020;9(2):137. https://doi.org/10.3390/foods9020137 [Google Scholar] [Crossref]
75. Konlan AB, Assumang I, Abe-Inge V. Crop biofortification—a key determinant towards fighting micronutrient malnutrition in Northern Ghana. In: Malnutrition [Internet]. IntechOpen; 2022. https://doi.org/10.5772/intechopen.104460 [Google Scholar] [Crossref]
76. Tola M, Kebede B. Occurrence, importance and control of mycotoxins: a review. Cogent Food Agric. 2016;2(1):1191103. https://doi.org/10.1080/23311932.2016.1191103 [Google Scholar] [Crossref]
77. Fovo FP, Maeda DG, Kaale LD. Microbiological approaches for mycotoxin decontamination in foods and feeds to enhance food security: a review. Mycotoxin Res. 2025; 41:385–404. [Google Scholar] [Crossref]
78. Li J, Shi M, Wang Y, Liu J, Liu S, Kang W, Zhang X, Li C, Wang Q, Wu Q. Probiotic-derived extracellular vesicles alleviate AFB1-induced intestinal injury by modulating the gut microbiota and AHR activation. J Nanobiotechnol. 2024; 22:697. https://doi.org/10.1186/s12951-024-02979-3 [Google Scholar] [Crossref]
79. Nyumuah RO, Hoang TC, Amoaful EF, Agble R, Meyer M, Wirth JP, Rohner F, Panagides D, Kupka R. Implementing large-scale food fortification in Ghana: lessons learned. Food Nutr Bull. 2012;33(4 Suppl): S293–S303. https://doi.org/10.1177/15648265120334s305 [Google Scholar] [Crossref]
80. Zhao T, Wang H, Liu Z, Liu Y, Ji D, Li B, Zhang H, Sun W, Li Y, Sun Z. Recent perspective of Lactobacillus in reducing oxidative stress to prevent disease. Antioxidants. 2023;12(3):769. https://doi.org/10.3390/antiox12030769 [Google Scholar] [Crossref]
81. Samarajeewa U. Gene recognition and role of foodomics in mycotoxin control: a review. J Toxicol Stud. 2025;3(1):1857. https://doi.org/10.59400/jts1857 [Google Scholar] [Crossref]
82. Owolabi IO, Leng G, MacIntosh DL, Hoet P, Leoni C, van Engelen JGM, et al. Applications of mycotoxin biomarkers in human biomonitoring for exposome-health studies: past, present, and future. Expo Health. 2024; 16:837–859. https://doi.org/10.1007/s12403-023-00595-4 [Google Scholar] [Crossref]
83. Sun LH, Zhang NY, Zhu MK, Zhao L, Zhou JC, Qi DS. Prevention of aflatoxin B1 hepatoxicity by dietary selenium is associated with inhibition of cytochrome P450 isozymes and up-regulation of selenoprotein genes in chick liver. J Nutr. 2016;146(4):655–661. https://doi.org/10.3945/jn.115.224626 [Google Scholar] [Crossref]
84. Valencia S, Casillas-Figueroa F, Mejía-Cabrera A, Figueroa-Salcido OG, Rodríguez-Hernández AI, Guerrero-Analco JA, et al. Human gut microbiome: a connecting organ between nutrition, metabolism, and health. Int J Mol Sci. 2025;26(9):4112. https://doi.org/10.3390/ijms26094112 [Google Scholar] [Crossref]
85. Birol E, Bouis H, Saltzman A. Biofortification: the evidence. HarvestPlus White Paper. 2021. Available from: https://www.harvestplus.org/wp-content/uploads/2021/12/BiofortificationThe-Evidence.pdf [Google Scholar] [Crossref]
86. Lapris M, Dubois M, Debontridder F, Schneider R, Scippo ML. The potential of multi-screening methods and omics technologies to detect both regulated and emerging mycotoxins in different matrices. Foods. 2024;13(11):1746. https://doi.org/10.3390/foods13111746 [Google Scholar] [Crossref]
87. Guerre P. Mycotoxin and gut microbiota interactions. Toxins (Basel). 2020;12(12):769. https://doi.org/10.3390/toxins12120769 [Google Scholar] [Crossref]
88. González-López NM, Lozano MV, Gutiérrez S, Vázquez C, Llorens JV, Marín S, et al. Omics in the detection and identification of biosynthetic pathways related to mycotoxin synthesis. Anal Methods. 2021;13(36):4287–4302. https://doi.org/10.1039/D1AY01017D [Google Scholar] [Crossref]
89. Vidal A, Marín S, Ramos AJ, Cano-Sancho G, Sanchis V. Mycotoxin biomarkers of exposure: a comprehensive review. Compr Rev Food Sci Food Saf. 2018;17(5):1127–1155. https://doi.org/10.1111/1541-4337.12367 [Google Scholar] [Crossref]
90. Wu Y, Zhou X, Li X, Yang Y, Wang Z, Liu Y, et al. Selenium: 48-year journey of global clinical trials. Mol Cell Biochem. 2025;480:3253–3265. https://doi.org/10.1007/s11010-024-05202-x [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- In Silico Safety Evaluation of Local Spices Tea Used Against Human Metapneumovirus (HMPV)
- Assessment of Genotoxicity and Inflammation in the Brain Hippocampus of Lead-Induced Mice Treated With Diospyros Mespiliformis
- Determination of Polycyclic Aromatic Hydrocarbons and Total Petroleum Hydrocarbons in Crude Polluted Soil from Esaba, Ughelli South, Delta Nigeria
- Lipase Derived from Bacteria Isolated from The Seawater of Muara Badak, East Kalimantan