In Silico Safety Evaluation of Local Spices Tea Used Against Human Metapneumovirus (HMPV)

Authors

Idumu, E

Department of Biochemistry, Federal University Otuoke, Bayelsa State (Nigeria)

Johnson, J.T

Department of Biochemistry, Federal University Otuoke, Bayelsa State (Nigeria)

Article Information

DOI: 10.51244/IJRSI.2025.120800245

Subject Category: Biochemistry

Volume/Issue: 12/9 | Page No: 2787-2794

Publication Timeline

Submitted: 2025-08-26

Accepted: 2025-09-01

Published: 2025-10-02

Abstract

Human Metapneumovirus (HMPV) is an enveloped, single-stranded negative-sense RNA virus that primarily affects the respiratory tract, and has beenrecognized as a significant cause of respiratory infections, particularly in young children, the elderly and immunocompromised individuals. Despite its global burden, there are currently no approved vaccines or specific antiviral agents available for the treatment of HMPV, highlighting an urgent need for the development of novel therapeutics. Treatment remains supportive, and prevention and it is limited to infection control practices such as the use of local spices. This work aimed to evaluate the safety of spices tea formulated from six (6) local spicestraditionally used in management of human metapneumoviral infection by utilizing in silico tools approach to predict the pharmacokinetics, toxicity, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of the promising compounds. Eleven phytochemicals (lead compounds) were screened for drug-likeness, physicochemical properties, and pharmacokinetics using computational models. ADMET profiling revealed good oral bioavailability and minimal cytochrome enzyme inhibition for most compounds. Toxicity screening revealed that while some hit compounds were mildly toxic, all of the lead compounds were non-mutagenic and non-cytotoxic. However, prediction of neurotoxicity, cardiotoxicity, and immunotoxicity for squalene and stigmasterol (with probabilities > 0.85) at high dosage and this raises caution for dose selection and necessitates further in vivo toxicological evaluation.

Keywords

In silico, Metapneumovirus, Piper guineense, Tetrapleuratetraptera, Xylopiaaethiopica, Allium sativum, Ocimumgratissimum and Zingiberofficinal

Downloads

References

1. Akinjogunla, O. J., Adegoke, A. A., Udokang, I. P., & Adebayo-Tayo, B. C. (2014). Antibacterial and phytochemical evaluation of Tetrapleura tetraptera Taub. pod extracts. [Google Scholar] [Crossref]

2. Adedokun, M. O., & Onakoya, O. A. (2021). Antimicrobial and antiviral potentials of Piper guineense (Uziza): A review. Journal of Medicinal Plants Research, 15(6), 245–253. [Google Scholar] [Crossref]

3. Asanga, E. A., Johnson, J. T., Iwuanyanwu, T. P., & Ibe, C. J. (2024a). Computational Prediction of pharmacokinetic and ADMET properties of bioactive compounds. Journal of Computational Chemistry, 45(3), 233–245. [Google Scholar] [Crossref]

4. Bayan, L., Koulivand, P. H., & Gorji, A. (2014). Garlic: A review of potential therapeutic effects. Avicenna Journal of Phytomedicine, 4(1), 1–14. [Google Scholar] [Crossref]

5. Boivin, G., Abed, Y., Pelletier, G., Ruel, L., Moisan, D., Côté, S., Peret, T. C. T., Erdman, D. D., Anderson, L. J., & Boucher, F. D. (2002). Virological features and clinical manifestations associated with human metapneumovirus: A new paramyxovirus responsible for acute respiratory-tract infections in all age groups. Journal of Infectious Diseases, 186(9), 1330–1334. [Google Scholar] [Crossref]

6. Daina, A., Michielin, O., &Zoete, V. (2019).SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. [Google Scholar] [Crossref]

7. Falsey, A. R., Erdman, D., Anderson, L. J., & Walsh, E. E. (2003). Human Metapneumovirus infections in young and elderly adults. New England Journal of Medicine, 349, 2289–2295. [Google Scholar] [Crossref]

8. Hoogen, V. D., de-Jong, B.G, Groen, J. C., Kuiken, J., de Groot, H.Y., Fouchier, R. & Osterhaus, A. D. M. E. (2001). A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nature Medicine, 7(6), 719–724. [Google Scholar] [Crossref]

9. Hoogen, V.D., van-Doornum, B. G., Fockens, G. J., Cornelissen, J. C., Beyer, J. J., Osterhaus, J. C. & Fouchier, R. A. M. (2003). Prevalence and clinical symptoms of human metapneumovirus infection in hospitalized patients. The Journal of Infectious Diseases, 188(10), 1571–1577. [Google Scholar] [Crossref]

10. Kamboj, M., Gerbin, M., Huang, C. K., Brennan, C., Stiles, J., Balashov, S., & Sepkowitz, K. A. (2008). Clinical characteristics of human metapneumovirus infection among patients with cancer. Clinical Infectious Diseases, 46(12). [Google Scholar] [Crossref]

11. Kouassi, K. C., N’Guessan, J. D., Kouadio, Y. J., Kra, A. M., & Zirihi, G. N. (2020).Antimicrobial and antiviral activities of Xylopia aethiopica. Journal of Applied Biosciences, 149, 15368–15379. [Google Scholar] [Crossref]

12. Lionta, E., Spyrou, G., Vassilatis, D. K., & Cournia, Z. (2014). Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Current Topics in Medicinal Chemistry, 14(16), 1923–1938. [Google Scholar] [Crossref]

13. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3–26. [Google Scholar] [Crossref]

14. Oladimeji, O. H., &Usifoh, C. O. (2015).Phytochemical and antimicrobial studies on some Nigerian medicinal plants.Journal of Pharmacy & Bioresources, 12(2), 156–164. [Google Scholar] [Crossref]

15. Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., &Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. [Google Scholar] [Crossref]

16. Lipinski, C. A. (2021). Drug-like properties and the causes of poor solubility and poor permeability.Journal of Pharmacokinetics and Pharmacodynamics, 48(1), 15–28. [Google Scholar] [Crossref]

18. Mashhadi, N. S., Ghiasvand, R., Askari, G., Hariri, M., Darvishi, L., & Mofid, M. R. (2013). Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: Review of current evidence. International Journal of Preventive Medicine, 4(Suppl 1), S36–S42. [Google Scholar] [Crossref]

19. Prabhu, K. S., Lobo, R., Shirwaikar, A., & Shirwaikar, A. (2009). Ocimum gratissimum: A review of its chemical, pharmacological and ethnomedicinal properties. Open complementary Medicine Journal, 1, 1–15. [Google Scholar] [Crossref]

20. Walsh, E. E., Peterson, D. R. & Falsey, A. R. (2008). Human metapneumovirus infections in adults: Another piece of the puzzle. New England Journal of Medicine, 358(6), [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles