Geochemical Investigation of the Nanka Formation in Southeastern Nigeria: Proxy for Sediment Provenance and Tectonic Setting

Authors

Elomba, U.F

Department of geological sciences, Nnamdi Azikiwe University, Awka (Nigeria)

Onuigbo, E.N

Department of geological sciences, Nnamdi Azikiwe University, Awka (Nigeria)

Madu, F.M

Department of geological sciences, Nnamdi Azikiwe University, Awka (Nigeria)

Aseh, P

Department of geological sciences, Nnamdi Azikiwe University, Awka (Nigeria)

Ahaneku, C.V

Department of geological sciences, Nnamdi Azikiwe University, Awka (Nigeria)

Osuagwu, J.O

Department of geological sciences, Nnamdi Azikiwe University, Awka (Nigeria)

Nwofia, U.E

Department of geological sciences, Nnamdi Azikiwe University, Awka (Nigeria)

Article Information

DOI: 10.51244/IJRSI.2025.120800206

Subject Category: Social science

Volume/Issue: 12/8 | Page No: 2287-2298

Publication Timeline

Submitted: 2025-08-12

Accepted: 2025-08-21

Published: 2025-09-20

Abstract

This study investigates the geochemical characteristics of the Nanka Formation in the Niger Delta Basin, southeastern Nigeria. The research was carried out in order to reconstruct it's sediment provenance, weathering history, depositional environment, and tectonic setting. Representative sandstone samples collected from the outcrop sections of the formation were analyzed for major and trace elements using X-ray Fluorescence (XRF) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) techniques. The results revealed that the major elements are dominated by silica with concentration value ranges of 72.95 and 82.14wt%. Comparison of the major and trace elements concentrations in the investigated sediment with the Upper Continental Crust (UCC) and Post-Archean Australian Shale (PAAS) indicated silica enrichment and depletion of Al2O3, CaO, MgO, K2O and Na2O. Trace elements such as Ni, Co, Zn, Th and Zr were depleted with respect to PAAS. There is also minor enrichment of U and Ba. The sandstones were classified as litharenites and sublitharenites. Geochemical indices such as the Chemical Index of Alteration (CIA), Plagioclase Index of Alteration (PIA) and Chemical Index of Alteration (CIW) have value ranges of 46.94 to 57.94%, 55.28 to 74.02% and 50.77 to 66.61% respectively. The value ranges of the indices are consistent with A- CN- K tenery plot of the sandstone, suggesting moderate weathering. The Index of Compositional Variability (ICV) values of between 1.37 and 1.60% indicate immature source rock. The paleo- climatic condition is semi- humid. Nanka Formation is sourced from felsic and intermediate igneous rocks from passive margin and was deposited in a marginal marine setting.

Keywords

Geochemical, major elements, trace elements, depositional environment, Provenance.

Downloads

References

1. Ahmad, M., Bhat, G. M., & Rashid, H. (2014). Geochemistry of sandstones from the Neoproterozoic Bhim Group, NW Indian Himalaya: Implications for provenance, weathering, and tectonic setting. Arabian Journal of Geosciences, 7(11), 4591–4606. [Google Scholar] [Crossref]

2. Ajakaiye, D. E., Hall, D. H., Millar, T. W., Verheijen, P. J. T., Awad, M. B., & Ojo, S. B. (1986). Aeromagnetic anomalies and tectonic trends in and around the Benue Trough, Nigeria. Nature, 319(6055), 582–584. [Google Scholar] [Crossref]

3. Basu, A. (1985). Weathering and its impact on sedimentary provenance studies. Journal of Sedimentary Petrology, 55(2), 231–234. [Google Scholar] [Crossref]

4. Benkhlil, J. (1982). Structural framework of the Benue Trough. Journal of African Earth Sciences, 1(3–4), 271–282. [Google Scholar] [Crossref]

5. Burke, K., Dessauvagie, T. F. J., & Whiteman, A. J. (1972). Geological history of the Benue Valley and adjacent areas. In T.F.J. Dessauvagie & A.J. Whiteman (Eds.), African Geology (pp. 187–205). Ibadan University Press. [Google Scholar] [Crossref]

6. Chukwu-Ike, I. N. (1981). Structural interpretation of aeromagnetic data over the Benue Trough, Nigeria. Geological Survey of Nigeria Bulletin, 28, 27–38. [Google Scholar] [Crossref]

7. Dickinson, W. R. (1985). Interpreting provenance relations from detrital modes of sandstones. In: Zuffa, G. G. (Ed.), Provenance of Arenites, NATO ASI Series (Vol. 148, pp. 333–361). Springer. [Google Scholar] [Crossref]

8. Dickinson, W. R. (1988). Provenance and sediment dispersal in relation to paleotectonics and paleogeography. In Kokelaar, B.P., & Howells, M.F. (Eds.), Margins of the Ocean Basins (pp. 121–146). Geological Society Special Publication No. 28. [Google Scholar] [Crossref]

9. Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., ... & Ryberg, P. T. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94(2), 222–235. [Google Scholar] [Crossref]

10. Edegbai, B. O., Ejeh, I. E., & Mamah, L. I. (2019). Petrography and geochemistry of sandstones from the Ajali Formation, southeastern Nigeria: Implications for provenance, tectonic setting and weathering. Journal of African Earth Sciences, 154, 66–80. [Google Scholar] [Crossref]

11. Ejeh, I. E., Odigi, M. I., & Ezeh, H. N. (2015). Geochemical evidence for provenance and tectonic setting of the Campanian-Maastrichtian sandstones in the Anambra Basin, Nigeria. Journal of African Earth Sciences, 111, 292–304. [Google Scholar] [Crossref]

12. Floyd, P. A., Leveridge, B. E., & Cave, R. (1989). Proterozoic metasedimentary rocks of southwestern England: Geochemistry and tectonic setting. Journal of the Geological Society, 146(1), 121–132. [Google Scholar] [Crossref]

13. Garcia, D., Cocherie, A., Guerrot, C., Kouamelan, A. N., & Trokon, H. (1994). Geochemistry and geochronology of the Dimbokro greenstones and associated granitoids (Côte d'Ivoire, West Africa): Evidence for crustal evolution in the Birimian (Early Proterozoic). Precambrian Research, 65(1–4), 207–224. [Google Scholar] [Crossref]

14. Hatch, J.R., Leventhal, J.S., 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark shale member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chem. Geol. 99, 65–82. [Google Scholar] [Crossref]

15. Hayashi, K. I., Fujisawa, H., Holland, H. D., & Ohmoto, H. (1997). Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61(19), 4115–4137. [Google Scholar] [Crossref]

16. Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58(5), 820–829. [Google Scholar] [Crossref]

17. Hoque, M., & Nwajide, C. S. (1984). Tectonic evolution of the southern part of the Benue Trough (Nigeria). Geologische Rundschau, 73(2), 583–590. [Google Scholar] [Crossref]

18. Jones, B., & Manning, D. A. C. (1994). Comparison of geochemical indices used for the interpretation of paleoredox conditions in ancient mudstones. Chemical Geology, 111(1–4), 111–129. [Google Scholar] [Crossref]

19. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 27, 745–750. [Google Scholar] [Crossref]

20. Maron, M. (1969). Origin and evolution of the Benue Trough. Bulletin of the Nigerian Mining and Geosciences Society, 9, 45–55. [Google Scholar] [Crossref]

21. Mortazavi, M., Jalilian, A., Aghanabati, A., & Taheri, S. (2014). Geochemical and petrographical investigations of the Garau Formation shales (Cretaceous) in western Iran: Implications for provenance, paleoclimate, and depositional conditions. Arabian Journal of Geosciences, 7(7), 2727–2743. [Google Scholar] [Crossref]

22. Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7), 1523–1534. [Google Scholar] [Crossref]

23. Nwachukwu, S. O. (1972). The tectonic evolution of the southern portion of the Benue Trough, Nigeria. Geological Magazine, 109(5), 411–419. [Google Scholar] [Crossref]

24. Nwajide, C. S. (1979). Sedimentological analysis of the Cretaceous sediments in the Middle Benue Trough. Sedimentary Geology, 22(3–4), 211–231. [Google Scholar] [Crossref]

25. Nwajide, C. S. (1980). Stratigraphy and sedimentation of the Cretaceous–Tertiary sediments in the Anambra Basin of eastern Nigeria. PhD Dissertation, University of Nigeria, Nsukka. [Google Scholar] [Crossref]

26. Nwajide, C. S. (2022). Geology of Nigeria's Sedimentary Basins. Shell Petroleum Development Company of Nigeria. [Google Scholar] [Crossref]

27. Oghenekome M.E., Chartterjee T.K., Hammond N.Q. and Van BeverDonker J.N., 2016. Provenance study from Petrography of the Late Permian- Early Triassic Sandstones of the Balfour Formation Karoo Supergroup, South Africa. Journal of Africa Earth Sciences 114:125-132 [Google Scholar] [Crossref]

28. Olade, M. A. (1975). Evolution of Nigeria's Benue Trough (Aulacogen): A Tectonic Model. Geological Magazine, 112(6), 575–583. [Google Scholar] [Crossref]

29. Overare, B., Oboh-Ikuenobe, F. E., & Ejeh, I. E. (2020). Geochemical provenance and tectonic setting of Late Cretaceous–Paleocene sandstones in the Anambra Basin, Nigeria. Journal of African Earth Sciences, 169, 103895. [Google Scholar] [Crossref]

30. Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone–mudstone suites using SiO₂ content and K₂O/Na₂O ratio. The Journal of Geology, 94(5), 635–650. [Google Scholar] [Crossref]

31. Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone–mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67(1–2), 119–139. [Google Scholar] [Crossref]

32. Rudnick, R.L., Gao, S., 2003. The composition of the continental crust. In: Treatise on Geochemistry, vol. 3. Elsevier – Pergamon, Oxford–London, pp. 1–64. [Google Scholar] [Crossref]

33. Short, K.C. and A.J. Stäuble. 1967. “Outline of Geology of Niger Delta”. American Association of Petroleum Geologists Bulletin. 51: 761-779. [Google Scholar] [Crossref]

34. Suttner, L. J., & Dutta, P. K. (1986). Alluvial sandstone composition and paleoclimate. I. Framework mineralogy. Journal of Sedimentary Research, 56(3), 329–345. [Google Scholar] [Crossref]

35. Taylor, S. R., & McLennan, S. M. (1985). The Continental Crust: Its Composition and Evolution. Blackwell. [Google Scholar] [Crossref]

36. Wright, J. B. (1981). Review of the origin and evolution of the Benue Trough in Nigeria. Earth Evolution Sciences, 1(2), 98–103. [Google Scholar] [Crossref]

37. Zaid, S.M., Al Gahtani, F., 2015. Provenance, diagenesis, tectonic setting, and geochemistry of hawkesbury sandstone (middle triassic), southern sydney basin, Australia. Turk. J. Earth Sci. 24, 72–98. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles