Cedi Appreciation Relative to Fuel Prices - A Machine Learning and Ancient Geomantic Approach

Authors

Enoch Deyaka Mwini

Department of Mathematics and Computer Studies, Tamale College of Education (Ghana)

Alhassan Iddrisu

MSCFE Student, World Quant University. (USA)

Alfred Asiwome Adu

Department of Statistics and Actuarial Science, KNUST, Kumasi (Ghana)

Article Information

DOI: 10.51244/IJRSI.2025.1210000317

Subject Category:

Volume/Issue: 12/10 | Page No: 3663-3684

Publication Timeline

Submitted: 2025-10-26

Accepted: 2025-11-04

Published: 2025-11-21

Abstract

In recent years, the Ghanaian Cedi (GHS) has experienced notable appreciation against major global currencies, coinciding with fluctuating domestic fuel prices. Understanding the sustainability of this appreciation is crucial for policymakers, investors, and economic planners. This study adopts an innovative interdisciplinary approach by integrating Machine Learning (ML) techniques with principles from Ancient Geomancy, aiming to analyze and forecast the trajectory of the Cedi relative to fuel price dynamics. Quantitative analysis is conducted using historical exchange rate data and fuel pricing information, employing time series forecasting models such as Long Short-Term Memory (LSTM) networks, Random Forest Regression, and Prophet to predict future movements in the value of the Cedi. These models are evaluated using standard metrics including Root Mean Square Error (RMSE) and R-squared (R²). Complementing the ML analysis, we apply symbolic and spatial interpretations from Ancient Geomantic traditions particularly those relating to elemental balance and directional energy flows to provide a qualitative framework for interpreting economic cycles and currency stability. The integration of these two paradigms allows for a richer, multi-dimensional understanding of economic phenomena. Our findings suggest that while Machine Learning models offer robust predictive capabilities, Geomantic insights contribute contextual depth, potentially revealing underlying patterns not captured through conventional quantitative methods alone. This study contributes to the growing discourse on blending traditional knowledge systems with modern computational tools in financial and economic analysis.

Keywords

Cedi appreciation, fuel prices, Machine Learning, Geomancy, economic forecasting, Ghanaian economy, LSTM, Random Forest, Prophet.

Downloads

References

1. Abdoli, G., & Akbari, M. (2018). Forecasting the USD/IRR exchange rate using machine learning and hybrid models. Journal of Economics, Finance and Administrative Science , 23(45), 101–116. https://doi.org/10.1108/JEFAS-09-2017-0086 [Google Scholar] [Crossref]

2. Addo, P. M., Fall, B., & Gueyie, J.-P. (2018). Exchange rate pass-through to domestic prices in Ghana: Evidence from structural VAR analysis. Ghana Economic Policy Review , 9(1), 45–62. [Google Scholar] [Crossref]

3. Akram, Q. F. (2009). Commodity prices, interest rates and the dollar. Economic Modelling , 26(1), 215–225. https://doi.org/10.1016/j.econmod.2008.07.004 [Google Scholar] [Crossref]

4. Adu, G., & Marbuah, G. (2011). Oil price shocks and exchange rate dynamics in Ghana. International Journal of Energy Economics and Policy , 1(2), 28–37. [Google Scholar] [Crossref]

5. Aguilera, R. F., & Radetzki, M. (2013). The six major enduring drivers of oil prices. The Energy Journal , 34(2), 1–27. https://doi.org/10.5547/01956574.34.2.1 [Google Scholar] [Crossref]

6. Ajayi, V. A. (1990). Traditional Yoruba agriculture and its implications for modern agricultural planning. Africa Development , 15(2), 113–130. [Google Scholar] [Crossref]

7. Almeida, H., & Waldman, M. (2019). The use of artificial intelligence in economics: Applications and predictions. American Economic Association Papers and Proceedings , 109, 505–510. https://doi.org/10.1257/pandp.20191065 [Google Scholar] [Crossref]

8. Appiah-Kubi, K. (1973). Oral tradition and historical reconstruction in West Africa. History in Africa , 1, 5–20. https://doi.org/10.2307/3171576 [Google Scholar] [Crossref]

9. Apter, A. (1991). Herskovits’ heritage: Myth as method in African history . Indiana University Press. [Google Scholar] [Crossref]

10. Atsalakis, G. S., & Valavanis, K. P. (2009). Surveying stock market forecasting techniques Part I: Traditional methods. Emerging Markets Journal , 1(1), 56–75. https://doi.org/10.5195/emj.2009.36 [Google Scholar] [Crossref]

11. Baffes, J., Oomes, N., & Ohnesorge, F. (2015). The great plunge in oil prices: Causes, consequences, and policy responses. IMF Staff Discussion Note , SDN/15/01. https://doi.org/10.5089/9781484302265.006 [Google Scholar] [Crossref]

12. Bekiros, S., & Marques, C. (2012). On the predictability of crude oil prices: Machine learning versus traditional models. Empirical Economics , 43(1), 255–273. https://doi.org/10.1007/s00181-011-0497-z [Google Scholar] [Crossref]

13. Berkes, F., Colding, J., & Folke, C. (2000). Rediscovery of traditional ecological knowledge as adaptive management. Ecological Applications , 10(5), 1251–1262. https://doi.org/10.1890/1051-0761 (2000)010[1251:ROTEKA]2.0.CO;2 [Google Scholar] [Crossref]

14. Boachie, M. K., & Tuffour, S. (2017). The impact of fuel price changes on inflation in Ghana. MPRA Paper No. 82178 . [Google Scholar] [Crossref]

15. Buetzer, S., Lardic, S., & Mignon, V. (2012). Forecasting the US real house price index using machine learning algorithms. Economics Bulletin , 32(4), 3031–3042. [Google Scholar] [Crossref]

16. Chen, K., Zhou, Y., & Dai, F. (2015). A LSTM-based method for stock returns prediction: A case study of the China stock market. Proceedings of the IEEE International Conference on Big Data , 2823–2824. https://doi.org/10.1109/BigData.2015.7364055 [Google Scholar] [Crossref]

17. Cologni, A., & Manera, M. (2009). Oil prices, inflation and interest rates in GCC countries: Empirical evidence from panel data. Energy Policy , 37(3), 858–870. https://doi.org/10.1016/j.enpol.2008.10.044 [Google Scholar] [Crossref]

18. Dornbusch, R. (1976). Expectations and exchange rate dynamics. Journal of Political Economy , 84(6), 1161–1176. https://doi.org/10.1086/260503 [Google Scholar] [Crossref]

19. Frankel, J. A. (1981). Flexible exchange rates, prices, and the role of “news”: Lessons from the 1970s. Journal of Political Economy , 89(4), 665–705. https://doi.org/10.1086/261002 [Google Scholar] [Crossref]

20. Frankel, J. A., & Rose, A. K. (1996). Currency crashes in emerging markets: An empirical treatment. Journal of International Economics , 41(3–4), 351–366. https://doi.org/10.1016/S0022-1996 (96)01445-6 [Google Scholar] [Crossref]

21. Gadgil, M., Berkes, F., & Folke, C. (1993). Indigenous knowledge for biodiversity conservation. Ambio , 22(2–3), 151–156. [Google Scholar] [Crossref]

22. Grier, K. B., & Perry, M. J. (2000). The effects of real and nominal uncertainty on inflation and output growth: Some ARCH-M evidence. Journal of Macroeconomics , 22(1), 47–67. https://doi.org/10.1016/S0164-0704 (00)00127-8 [Google Scholar] [Crossref]

23. Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., Gintis, H., & McElreath, R. (2001). In search of homo economicus: Behavioral experiments in 15 small-scale societies. American Economic Review , 91(2), 73–78. https://doi.org/10.1257/aer.91.2.73 [Google Scholar] [Crossref]

24. Idowu, K. E. (2003). Olódùmarè: God in Yoruba belief and the seeing of Aikú . University of Ibadan Press. [Google Scholar] [Crossref]

25. Jiang, Z., & Liang, H. (2019). Stock trend prediction based on sentiment analysis and LSTM neural network. Procedia Computer Science , 154, 527–532. https://doi.org/10.1016/j.procs.2019.06.074 [Google Scholar] [Crossref]

26. Kamstra, M. J., Kramer, L. A., & Levi, M. D. (2003). Winter blues: A SAD financial cycle. American Economic Review , 93(1), 324–343. https://doi.org/10.1257/000282803321455312 [Google Scholar] [Crossref]

27. Kamruzzaman, M., & Islam, M. A. (2003). Exchange rate forecasting using neural networks: A comparative study. Global Business and Technology Association . [Google Scholar] [Crossref]

28. Kalu, U. U. (2007). The religious heritage of Nigeria: Yoruba divination and other essays . Spectrum Books Limited. [Google Scholar] [Crossref]

29. Khandelwal, I., Adhikari, R., & Verma, G. (2015). Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition. Procedia Computer Science , 48, 173–179. https://doi.org/10.1016/j.procs.2015.04.185 [Google Scholar] [Crossref]

30. Kumar, M., & Thenmozhi, M. (2006). Forecasting stock indices using ARIMA–neural network hybrid models. ICFAI Journal of Applied Finance , 12(4), 55–70. [Google Scholar] [Crossref]

31. Lélé, S. M., & Norgaard, R. B. (2005). Practicing interdisciplinarity. BioScience , 55(11), 969–975. https://doi.org/10.1641/0006-3568 (2005)055[0969:PI]2.0.CO;2 [Google Scholar] [Crossref]

32. McCoy, S. (1999). The practical geomancer: Discovering the earth's energy with the ancient Chinese system of Feng Shui . Destiny Books. [Google Scholar] [Crossref]

33. Miller, T. R., Muñoz-Erickson, T. A., & Polsky, C. (2008). Bridging the divide between social and biophysical research: A review of interdisciplinary land change studies. Human Ecology , 36(3), 429–440. https://doi.org/10.1007/s10745-008-9169-3 [Google Scholar] [Crossref]

34. Malkiel, B. G. (2003). The efficient market hypothesis. Handbook of the Economics of Finance , 1, 1–83. https://doi.org/10.1016/S1574-0021 (02)01001-9 [Google Scholar] [Crossref]

35. Ndlovu-Gatsheni, S. J. (2015). Epistemic freedom in Africa: Deprovincialization and decolonization. Routledge . [Google Scholar] [Crossref]

36. North, D. C. (1990). Institutions, institutional change and economic performance. Cambridge University Press . [Google Scholar] [Crossref]

37. Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock market index using fusion of machine learning techniques. Journal of Computational Science , 6, 222–230. https://doi.org/10.1016/j.jocs.2015.02.005 [Google Scholar] [Crossref]

38. Prince, R. J. (1996). Yoruba voices: Studies in oral traditions and cultural perceptions . University of Ibadan Press. [Google Scholar] [Crossref]

39. Razin, A., & Collins, S. M. (1997). Real exchange rate misalignment: Definitions, measurement, and international comparisons. National Bureau of Economic Research Working Paper Series , No. 5449. https://doi.org/10.3386/w5449 [Google Scholar] [Crossref]

40. Sadorsky, P. (2000). The effect of oil price volatility on Canadian industrial production. Energy Economics , 22(4), 413–423. https://doi.org/10.1016/S0140-9883 (99)00043-3 [Google Scholar] [Crossref]

41. Tayefi, M., Rajaee, T., & Samadianfard, S. (2021). Hybrid machine learning models applied to monthly streamflow prediction under climate change scenarios. Water Resources Management , 35(4), 1179–1196. https://doi.org/10.1007/s11269-020-02749-y [Google Scholar] [Crossref]

42. Wang, J., Wang, J., Zhang, W., & Guo, H. (2018). Stock index forecasting based on a hybrid model. Omega , 40(6), 758–766. https://doi.org/10.1016/j.omega.2011.09.002 [Google Scholar] [Crossref]

43. Yu, L., Wang, S., & Lai, K. K. (2008). Forecasting crude oil price with an EMD-based neural network ensemble learning model. Energy Economics , 30(5), 2623–2639. https://doi.org/10.1016/j.eneco.2008.05.003 [Google Scholar] [Crossref]

44. Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing , 50, 159–175. https://doi.org/10.1016/S0925-2312 (01)00702-0 [Google Scholar] [Crossref]

45. Zhang, Y., Zhou, W., & Wang, J. (2004). A neural network ensemble approach for financial time series forecasting. Information Sciences , 169(1–2), 39–53. https://doi.org/10.1016/j.ins.2004.02.016 [Google Scholar] [Crossref]

46. Zondi, S. (2020). Decolonizing economics education in South Africa: A call to action. South African Journal of Higher Education , 34(4), 1–14. https://doi.org/10.20853/34-4-3747 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles