Evolution of Viral Lysis Techniques Post COVID-19: A Review of Some Major Advancements

Authors

Faustine MARIUS

Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh (India)

Job Henri MBIA

Molecular Biology Unit, Laboratory and Clinical Biology Department, Douala Gyneco-Obstetric and Pediatric Hospital, 7270 Yassa, Douala (Cameroon)

Article Information

DOI: 10.51244/IJRSI.2025.1215PH000196

Subject Category: Diagnostic Technology

Volume/Issue: 12/15 | Page No: 2609-2614

Publication Timeline

Submitted: 2025-09-27

Accepted: 2025-10-04

Published: 2025-11-21

Abstract

Viral lysis is a critical step for obtaining nucleic acids and other components from viral particles. Prior to, and during the COVID-19 pandemic, viral lysis techniques required laboratory equipment and expertise, and especially required numerous washing steps post lysis for nucleic acid purification that significantly increase the overall turnaround time. Towards and during the Post COVID-19 era, novel and compelling lysis techniques revolutionised viral lysis. These innovations, born from the response to SARS-CoV-2, successfully overcame the numerous flaws of the ancient era, making viral lysis easier and safer to perform, less time consuming, cost-effective, and by far less demanding in terms of reagents, consumables, equipment, and expert personnel. This review presents and discusses some major advancements in viral lysis techniques in the post COVID-19 era. Emphasis is put on the innovation each technique brings and how it makes lysis better, safer and easier, and also how it shortens protocols and adaptability in point of care testing.

Keywords

SARS-CoV-2 detection, Lysis techniques, Diagnostics, post COVID-19, Innovations

Downloads

References

1. B. Bahr, ‘Lysis’, Fiveable, 2024. https://library.fiveable.me/key-terms/anatomy-physiology/lysis (accessed Aug. 18, 2025). [Google Scholar] [Crossref]

2. M. S. Islam, A. Aryasomayajula, and P. R. Selvaganapathy, ‘A Review on Macroscale and Microscale Cell Lysis Methods’, Micromachines, vol. 8, no. 83, pp. 1–27, 2017, doi: 10.3390/mi8030083. [Google Scholar] [Crossref]

3. N. Gupta, ‘DNA extraction and polymerase chain reaction’, J. Cytol., vol. 36, no. 2, pp. 116–117, 2019, doi: 10.4103/JOC.JOC_110_18. [Google Scholar] [Crossref]

4. J. B. Case, A. L. Bailey, A. S. Kim, R. E. Chen, and M. S. Diamond, ‘Growth, detection, quantification, and inactivation of SARS-CoV-2’, Virology, 2020, doi: 10.1016/j.virol.2020.05.015. [Google Scholar] [Crossref]

5. S. Saleh, H. Alkalamouni, K. Antar, J. Rahme, M. Kazan, and P. Karam, ‘Quartz crystal microbalance-based biosensor for rapid and ultrasensitive SARS-CoV-2 detection’, J. Pharm. Biomed. Anal. Open, vol. 5, 2025, doi: https://doi.org/10.1016/j.jpbao.2025.100071. [Google Scholar] [Crossref]

6. Excedr, ‘DNA Purification : Overview & Applications’, Excedr, 2023. https://www.excedr.com/resources/dna-purification-overview-and-application (accessed Aug. 19, 2025). [Google Scholar] [Crossref]

7. M. N. Esbin, O. N. Whitney, S. Chong, A. Maurer, X. Darzacq, and R. Tjian, ‘Overcoming the bottleneck to widespread testing : a rapid review of nucleic acid testing approaches for COVID-19 detection’, RNA, vol. 26, no. 7, pp. 771–783, 2020, doi: 10.1261/rna.076232.120. [Google Scholar] [Crossref]

8. Clinical Laboratory News and Insights, ‘Chemical vs . Physical Methods in Nucleic Acid Isolation’, Helix Molecular Solutions, 2023. [Google Scholar] [Crossref]

9. M. Danaeifar, ‘New horizons in developing cell lysis methods : A review’, Biotechnol. Bioeng., vol. 119, pp. 3007–3021, 2022, doi: 10.1002/bit.28198. [Google Scholar] [Crossref]

10. T. Stakenborg et al., ‘Molecular detection of SARS-COV-2 in exhaled breath at the point-of-need’, Biosens. Bioelectron., vol. 217, pp. 1–10, 2022, doi: 10.1016/j.bios.2022.114663. [Google Scholar] [Crossref]

11. CASP, ‘CASP Checklist: For Diagnostic Test Studies’, CASP, 2024. https://casp-uk.net/casp-checklists/CASP-checklist-diagnostic-test-2024.pdf (accessed May 27, 2025). [Google Scholar] [Crossref]

12. ABCAM, ‘RNA purification: Key techniques and best practices’, abcam, 2020. https://www.abcam.com/en-us/knowledge-center/dna-and-rna/rna-purification? (accessed Aug. 25, 2025). [Google Scholar] [Crossref]

13. J. Yuan et al., ‘Application of a One-Step method for rapid detection of nucleic acids from fungi’, Mycology, vol. 00, no. 00, pp. 1–13, 2025, doi: 10.1080/21501203.2025.2471979. [Google Scholar] [Crossref]

14. A. Kumar, A. Kumar, Y. Padwad, S. Sharma, and S. Kumar, ‘Development of nucleic acid extraction-free one-step real-time RT-PCR for diagnosis of SARS-CoV-2 infection’, J. Infect. Dev. Ctries., vol. 19, no. 6, pp. 833–842, 2025, doi: 10.3855/jidc.18079. [Google Scholar] [Crossref]

15. G. P. Ngaba et al., ‘Comparative analysis of two molecular tests for the detection of COVID-19 in Cameroon’, PanAfrican Med. J., vol. 39, no. 214, 2021, doi: 10.11604/pamj.2021.39.214.30718. [Google Scholar] [Crossref]

16. BIOSYNEX SA, ‘BIOSYNEX AMPLIQUICK ® SARS-CoV-2’, 2021. [Online]. Available: www.biosynex.com [Google Scholar] [Crossref]

17. Carl Roth, ‘Safety Data Sheet: Guanidine Thiocyanate’, 2024. [Online]. Available: carlroth.com/medias/SDB-0017-IE-EN.pdf [Google Scholar] [Crossref]

18. D. Obino, M. Vassalli, A. Franceschi, A. Alessandrini, P. Facci, and F. Viti, ‘An overview on microfluidic systems for nucleic acids extraction from human raw samples’, Sensors, vol. 21, no. 9, 2021, doi: 10.3390/s21093058. [Google Scholar] [Crossref]

19. S. Aryal, ‘Cell Disruption - Definition, Methods, Types, Significance’, Microbe Notes, 2021. https://microbenotes.com/cell-disruption-methods/ (accessed Jul. 10, 2025). [Google Scholar] [Crossref]

20. Z. Lin, Z. Zou, Z. Pu, M. Wu, and Y. Zhang, ‘Application of microfluidic technologies on COVID-19 diagnosis and drug discovery’, Acta Pharm. Sin. B, vol. 13, no. 7, pp. 2877–2896, 2023, doi: 10.1016/j.apsb.2023.02.014. [Google Scholar] [Crossref]

21. L. Thomas and J. Logan, ‘Benefits of Using a Microfluidic Device’, NEWS: Medical and Life Sciences, 2025. https://www.news-medical.net/life-sciences/Benefits-of-a-Microfluidic-System.aspx (accessed Jul. 05, 2025). [Google Scholar] [Crossref]

22. E. S. Yu, B. H. Kang, M. S. Ahn, J. H. Jung, J. H. Park, and K. H. Jeong, ‘Highly Efficient On-Chip Photothermal Cell Lysis for Nucleic Acid Extraction Using Localized Plasmonic Heating of Strongly Absorbing Au Nanoislands’, ACS Appl. Mater. Interfaces, vol. 15, no. 29, pp. 34323–34331, 2023, doi: 10.1021/acsami.3c01856. [Google Scholar] [Crossref]

23. R. Fradique, A. Jardim, A. M. Azevedo, V. Chu, and J. P. Conde, ‘Continuous microfluidic platform combining cell lysis and protein extraction for screening overall process conditions’, J. Chem. Technol. Biotechnol., vol. 99, no. 3, pp. 618–625, 2023, doi: 10.1002/jctb.7564. [Google Scholar] [Crossref]

24. R. W. Peeling, D. L. Heymann, Y. Teo, and P. J. Garcia, ‘Diagnostics for COVID-19: moving from pandemic response to control’, Lancet, vol. 399, pp. 757–768, 2022, doi: 10.1016/S0140-6736(21)02346-1. [Google Scholar] [Crossref]

25. B. Singh, B. Datta, A. Ashish, and G. Dutta, ‘A comprehensive review on current COVID-19 detection methods : From lab care to point of care diagnosis’, Sensors Int., vol. 2, 2021, doi: 10.1016/j.sintl.2021.100119. [Google Scholar] [Crossref]

26. A. Escobar, P. Chiu, J. Qu, Y. Zhang, and C. Xu, ‘Integrated Microfluidic-Based Platforms for On-Site Detection and Quantification of Infectious Pathogens : Towards On-Site Medical Translation of SARS-CoV-2 Diagnostic Platforms’, Micromachines, vol. 12, no. 1079, pp. 1–25, 2021, doi: 10.3390/mi12091079. [Google Scholar] [Crossref]

27. N. L. Welch et al., ‘Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants’, Nat. Med., vol. 28, no. 5, pp. 1083–1094, 2022, doi: 10.1038/s41591-022-01734-1. [Google Scholar] [Crossref]

28. J. Qian et al., ‘Rapid and comprehensive detection of viral antibodies and nucleic acids via an acoustofluidic integrated molecular diagnostics chip: AIMDx’, Sci. Adv. , vol. 11, no. 3, 2025, doi: 10.1126/sciadv.adt5464. [Google Scholar] [Crossref]

29. N. Mehlawat, C. Tseng, A. Shenoda, X. Kostoulias, and K. Sharma, ‘Integrating acoustic microfluidics with spectroscopic analysis for efficient bacterial lysis and molecular characterisation’, Biosens. Bioelectron., vol. 289, 2025, doi: 10.1016/j.bios.2025.117851. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles