Physiological and Biodegradation Changes Properties of PLA\UHMWPE\PVA Blends During Early Stage of Biodegradation in Vivo
Authors
Department of Engineering of Polymer and Petrochemical Industries, College of Materials Engineering, University of Babylon, Hillah (Iraq)
Department of Engineering of Polymer and Petrochemical Industries, College of Materials Engineering, University of Babylon, Hillah (Iraq)
Department of Prosthetics and Orthotics, College of Engineering, University of Karbala, Kerbala (Iraq)
Article Information
DOI: 10.51244/IJRSI.2025.120800234
Subject Category: Engineering & Technology
Volume/Issue: 12/9 | Page No: 2657-2666
Publication Timeline
Submitted: 2025-08-23
Accepted: 2025-08-26
Published: 2025-09-30
Abstract
Biodegradable plastic blends from natural sources, namely pure polylactic acid (PLA) and polyvinyl alcohol (PVA) with ultra-high molecular weight polyethylene (UHMWPE) softener, were studied to investigate changes in their physical properties resulting from in vivo biodegradation at body temperature. These blends are also suitable for the manufacture of medical scaffolds and artificial joints. Fourier transform infrared (FTIR) spectroscopy revealed a significant change in the chemical composition, manifested by improved cohesion and structural diffusion. Furthermore, a broad band appeared in the 3417–3471 cm-1 region, representing a clear modification of the spectra and leading to the formation of a biofilm on the outer surface of the samples. DSC analysis supported the clear effect across all blend spectra. Changes in the gravimetric values confirmed that the PVA\PLA/UHMWPE samples degraded significantly faster with increasing PVA volume fraction, and PVA completely disappeared at higher volume fractions. It was also shown that PLA did not degrade rapidly into PLA/UHMWPE in vivo, maintaining its overall structure and weight unchanged.
Keywords
biodegradable PLA, biodegradable PVA, FTIR, in vivo
Downloads
References
1. Kandemir, N., Yemeniciogwlu, A., Mecitogwlu, Ç., Elmaci, Z. S., Arslanogwlu, A., Göksungur, Y., & Baysal, T. (2005). Production of antimicrobial films by incorporation of partially purified lysozyme into biodegradable films of crude exopolysaccharides obtained from Aureobasidium pullulans fermentation. Food Technology and Biotechnology, 43(4), 343-350. [Google Scholar] [Crossref]
2. Ilyas, R. A., Sapuan, S. M., Harussani, M. M., Hakimi, M. Y. A. Y., Haziq, M. Z. M., Atikah, M. S. N., ... & Asrofi, M. (2021). Polylactic acid (PLA) biocomposite: Processing, additive manufacturing and advanced applications. Polymers, 13(8), 1326. [Google Scholar] [Crossref]
3. Castro-Aguirre, E., Iniguez-Franco, F., Samsudin, H. E. A., Fang, X., & Auras, R. (2016). Poly (lactic acid)—Mass production, processing, industrial applications, and end of life. Advanced drug delivery reviews, 107, 333-366. [Google Scholar] [Crossref]
4. Nagarkar, R., & Patel, J. (2019). Polyvinyl alcohol: a comprehensive study. Acta Sci. Pharm. Sci, 3(4), 34-44. [Google Scholar] [Crossref]
5. Halake, K., Birajdar, M., Kim, B. S., Bae, H., Lee, C., Kim, Y. J., ... & Lee, J. (2014). Recent application developments of water-soluble synthetic polymers. Journal of Industrial and Engineering Chemistry, 20(6), 3913-3918. [Google Scholar] [Crossref]
6. Zhang, H. X., Shin, Y. J., Lee, D. H., & Yoon, K. B. (2011). Preparation of ultra high molecular weight polyethylene with MgCl2/TiCl4 catalyst: Effect of internal and external donor on molecular weight and molecular weight distribution. Polymer bulletin, 66(5), 627-635. [Google Scholar] [Crossref]
7. Kurtz, S. M. (Ed.). (2009). UHMWPE biomaterials handbook: ultra high molecular weight polyethylene in total joint replacement and medical devices. Academic press. [Google Scholar] [Crossref]
8. Walter, W. L., Walter, W. K., & O’Sullivan, M. (2004). The pumping of fluid in cementless cups with holes. The Journal of arthroplasty, 19(2), 230-234. [Google Scholar] [Crossref]
9. Kurtz, S. M. (2009). From ethylene gas to UHMWPE component: The process of producing orthopedic implants. In UHMWPE biomaterials handbook (pp. 7-19). Academic Press. [Google Scholar] [Crossref]
10. Lim, K. L. K., Ishak, Z. M., Ishiaku, U. S., Fuad, A. M. Y., Yusof, A. H., Czigany, T., ... & Ogunniyi, D. S. (2005). High‐density polyethylene/ultrahigh‐molecular‐weight polyethylene blend. I. The processing, thermal, and mechanical properties. Journal of Applied Polymer Science, 97(1), 413-425. [Google Scholar] [Crossref]
11. Karuppiah, K. K., Bruck, A. L., Sundararajan, S., Wang, J., Lin, Z., Xu, Z. H., & Li, X. (2008). Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity. Acta Biomaterialia, 4(5), 1401-1410. [Google Scholar] [Crossref]
12. Wang, S., & Ge, S. (2007). The mechanical property and tribological behavior of UHMWPE: Effect of molding pressure. Wear, 263(7-12), 949-956. [Google Scholar] [Crossref]
13. Oral, E., Christensen, S. D., Malhi, A. S., Wannomae, K. K., & Muratoglu, O. K. (2006). Wear resistance and mechanical properties of highly cross-linked, ultrahigh–molecular weight polyethylene doped with vitamin E. The Journal of arthroplasty, 21(4), 580-591. [Google Scholar] [Crossref]
14. Medel, F. J., & Puértolas, J. A. (2008). Wear resistance of highly cross-linked and remelted polyethylenes after ion implantation and accelerated ageing. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 222(6), 877-885. [Google Scholar] [Crossref]
15. Oral, E., Beckos, C. A. G., Lozynsky, A. J., Malhi, A. S., & Muratoglu, O. K. (2009). Improved resistance to wear and fatigue fracture in high pressure crystallized vitamin E-containing ultra-high molecular weight polyethylene. Biomaterials, 30(10), 1870-1880. [Google Scholar] [Crossref]
16. Jahan, M. S. (2016). ESR insights into macroradicals in UHMWPE. In UHMWPE biomaterials handbook (pp. 668-692). William Andrew Publishing. [Google Scholar] [Crossref]
17. Bracco, P., & Oral, E. (2011). Vitamin E-stabilized UHMWPE for total joint implants: A review. Clinical Orthopaedics and Related Research, 469(8), 2286–2293. [Google Scholar] [Crossref]
18. Maizatul, N., Norazowa, I., Yunus, W. M. Z. W., Khalina, A., & Khalisanni, K. (2013). FTIR and TGA analysis of biodegradable poly (lactic acid)/treated kenaf bast fibre: Effect of plasticizers. Pertan. J. Sci. Technol, 21, 151-160. [Google Scholar] [Crossref]
19. Wunderlich, B. (2012). Macromolecular physics (Vol. 2). New York, NY: Academic Press. [Google Scholar] [Crossref]
20. Valenza, A., Visco, A. M., Torrisi, L., & Campo, N. (2004). Characterization of ultra-high-molecular-weight polyethylene (UHMWPE) modified by ion implantation. polymer, 45(5), 1707-1715. [Google Scholar] [Crossref]
21. Morais, M. S., Bonfim, D. P., Aguiar, M. L., & Oliveira, W. P. (2023). Electrospun poly (vinyl alcohol) nanofibrous mat loaded with green propolis extract, chitosan and nystatin as an innovative wound dressing material. Journal of Pharmaceutical Innovation, 18(2), 704-718. [Google Scholar] [Crossref]
22. Thomas, L. V., Arun, U., Remya, S., & Nair, P. D. (2009). A biodegradable and biocompatible PVA–citric acid polyester with potential applications as matrix for vascular tissue engineering. Journal of Materials Science: Materials in Medicine, 20(Suppl 1), 259-269. [Google Scholar] [Crossref]
23. Corradini, E., Mattoso, L. H. C., Guedes, C. G. F., & Rosa, D. S. (2004). Mechanical, thermal and morphological properties of poly (ε‐caprolactone)/zein blends. Polymers for advanced technologies, 15(6), 340-345. [Google Scholar] [Crossref]
24. Chen, Z. H., Yu, F., Zeng, X. R., & Zhang, Z. G. (2012). Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier. Applied Energy, 91(1), 7-12. [Google Scholar] [Crossref]
25. Cai, Y., Ke, H., Dong, J., Wei, Q., Lin, J., Zhao, Y., ... & Fong, H. (2011). Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials. Applied Energy, 88(6), 2106-2112. [Google Scholar] [Crossref]
26. Wang, L., & Meng, D. (2010). Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage. Applied Energy, 87(8), 2660-2665. [Google Scholar] [Crossref]
27. Darkwa, J., Su, O., & Zhou, T. (2012). Development of non-deform micro-encapsulated phase change energy storage tablets. Applied Energy, 98, 441-447. [Google Scholar] [Crossref]
28. Li, M., Wu, Z., & Kao, H. (2011). Study on preparation, structure and thermal energy storage property of capric–palmitic acid/attapulgite composite phase change materials. Applied energy, 88(9), 3125-3132. [Google Scholar] [Crossref]
29. Zhang, Z., Zhang, N., Peng, J., Fang, X., Gao, X., & Fang, Y. (2012). Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Applied Energy, 91(1), 426-431. [Google Scholar] [Crossref]
30. Haines, P. J., Reading, M., & Wilburn, F. W. (1998). Differential thermal analysis and differential scanning calorimetry. In Handbook of thermal analysis and calorimetry (Vol. 1, pp. 279-361). Elsevier Science BV. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- The Impact Of UI/UX Design on User Trust and Task Completion in Civic Tech Platforms
- Solar Cell Photovoltaic Model Shell Sp 75
- Development of an Intelligent Traffic Management System to Address Visibility Obstruction at Urban Intersections: A Case Study of Ibadan Metropolis
- Optimum Placement of Facts Devices on an Interconnected Power Systems Using Particle Swarm Optimisation Technique
- Assessing Construction Transformation and Implication on Future Production Flow System