Reverse Aging Technology Patents for 20 Years (2003–2023): Trends and Insights
Authors
Teacher-Education, Science Department, Eastern Visayas State University, Ormoc City (Philippines)
Article Information
DOI: 10.51244/IJRSI.2025.120800244
Subject Category: Health Science
Volume/Issue: 12/9 | Page No: 2762-2786
Publication Timeline
Submitted: 2025-08-20
Accepted: 2025-08-30
Published: 2025-10-02
Abstract
Rapid advancements in reverse aging technology, including telomere rejuvenation, gene therapy, stem cell therapies, and regenerative medicine, have great potential to halt the aging process. However, the implementation of these advancements in clinical practice has been hampered by issues with long-term safety, efficacy, regulatory barriers, societal concerns, and ethical dilemmas. This paper responds to this gap by analyzing the patent landscape of reverse-aging technologies between the years 2003 and 2023, focused on trends, key players, and innovation ecosystems. Patent data from Lens.org, which includes all the application submissions between 2003 and 2023 for gene therapy, stem cell therapies, telomere extension, and regenerative medicine, was used to conduct a patent landscape analysis. After applying the inclusion and exclusion criteria, a final set of nine patents was obtained from the 18 manually screened patents from an original dataset of over 160 million records using structured keyword searches, Boolean operators, and Cooperative Patent Classification (CPC) codes. Analytical tools, such as VOSviewer, mapped regional patterns and thematic trends by visualizing term and keyword co-occurrence. Results show different trends in patents, with biotechnology and regenerative medicine advancements driving increase. Patent activity is dominated by the US and WIPO, reflecting their leadership in innovation. Fragmented innovation landscape highlights interdisciplinary research clusters and further calls for more sophisticated analytical techniques and standardized terminology. While reverse aging technologies hold enormous, even revolutionary, potential, ethical behavior, legal frameworks, and equal access are still problematic. Strategic international collaboration and strong intellectual property frameworks, further reinforced by standardized methodologies, are what it means to accelerate innovation by addressing these issues.
Keywords
ethical considerations, gene therapy, patent landscape analysis, regenerative medicine, reverse aging technologies.
Downloads
References
1. Adrian, S., Geissler, J., Gorodkin, S. E., & Seemann, J. (2024). Patent data-driven analysis of literature associations with changing innovation trends. Frontiers in Research Metrics and Analytics. https://doi.org/10.3389/frma.2024.1432673 [Google Scholar] [Crossref]
2. Agnihotri, R. K. (2023). The measurements and determinants of patent technological value: Lifetime, strength, breadth, and dispersion from the technology diffusion perspective. Journal of Informetrics. https://doi.org/10.1016/j.joi.2022.101370 [Google Scholar] [Crossref]
3. Ai-Jun, D., Shanqing, Z., Xiao-Bing, H., Ti-Kun, X., Gui-Sheng, W., Hua-Ying, S., Shu-Hua, Q., & Huai-Rong, L. (2017). Current perspective in the discovery of anti-aging agents from natural products. Natural Products and Bioprospecting. https://doi.org/10.1007/s13659-017-0135-9 [Google Scholar] [Crossref]
4. Amy, J. C., Trappey. (2013). Advanced analyses of technology innovations, patents, and intellectual property. International Journal of Automation and Smart Technology. https://doi.org/10.5875/AUSMT.V3I3.252 [Google Scholar] [Crossref]
5. Ankit, S., & Srivastava, Y. N. (2022). Patent law, green technology, and innovation. https://doi.org/10.4324/9781003319467 [Google Scholar] [Crossref]
6. Aristodemou, L., & Tietze, F. (2018). Citations as a measure of technological impact: A review of forward citation-based measures. World Patent Information. https://doi.org/10.1016/j.wpi.2018.05.001 [Google Scholar] [Crossref]
7. Avelar, R. A., Palmer, D. H., Kulaga, A., & Fuellen, G. (2024). Conserved biological processes in partial cellular reprogramming: A comprehensive review. https://doi.org/10.20944/preprints202410.0122.v1 [Google Scholar] [Crossref]
8. Azemi, A., & Sinha, K. (2023). A review of patent regimes on health biotechnology innovation in India. Biotechnology Law Report. https://doi.org/10.1089/blr.2023.29295.aa [Google Scholar] [Crossref]
9. Babikova, A. V., & Korsakov, M. N. (2023). Topical issues of commercialization of innovations in modern conditions. Economy and Entrepreneurship. https://doi.org/10.34925/eip.2022.148.11.137 [Google Scholar] [Crossref]
10. Bakula, D., Ablasser, A., Aguzzi, A., Antebi, A., Barzilai, N., Bittner, M. I., ... & Scheibye-Knudsen, M. (2019). Latest advances in aging research and drug discovery. Aging-US. https://doi.org/10.18632/aging.102487 [Google Scholar] [Crossref]
11. Bastian, J. D., Meier, K. M., Ernst, R. S., & Stuck, A. E. (2021). A bibliometric analysis of orthogeriatric care: Top 50 articles. European Journal of Trauma and Emergency Surgery. https://doi.org/10.1007/s00068-021-01715-y [Google Scholar] [Crossref]
12. Benhamú, B., Martín-Fontecha, M., Vázquez-Villa, H., López-Rodríguez, M. L., & Ortega-Gutiérrez, S. (2022). New trends in aging drug discovery. Advances in Cardiovascular Diseases. https://doi.org/10.3390/biomedicines10082006 [Google Scholar] [Crossref]
13. Bhutambare, V., Kamble, C., Khilari, S., Bhalekar, D., Gawari, P., & Kanase, A. (2024). Innovative strategies in regenerative medicine: Bridging science and clinical practice. International Journal of Advanced Research in Science, Communication and Technology. https://doi.org/10.48175/ijarsct-22230 [Google Scholar] [Crossref]
14. Bishop, C. L., & Beach, D. H. (2013). Reversal of senescence. [Google Scholar] [Crossref]
15. Boccardi, V., Vetta, F., Cipriani, L., Fabbo, A., Pilotto, A., Ceci, M., ... & Palleschi, L. (2024). Position paper on essential strategies for healthy aging: Focus on preventing sarcopenia and cardiovascular diseases. Geriatric Care. https://doi.org/10.4081/gc.2024.12702 [Google Scholar] [Crossref]
16. Boreham, H. (2024). Reverse the age clock: Reverse clinical signs of ageing with epigenetic skin science. https://doi.org/10.33590/emjdermatol/wrlc5248 [Google Scholar] [Crossref]
17. Cambia. (2023). Lens.org: A comprehensive platform for patent and scholarly data. https://about.lens.org [Google Scholar] [Crossref]
18. Cano Macip, C., Hasan, R., Hoznek, V., Kim, J., Metzger, L. E., Sethna, S., & Davidsohn, N. (2023). Gene therapy mediated partial reprogramming extends lifespan and reverses age-related changes in aged mice. bioRxiv. https://doi.org/10.1101/2023.01.04.522507 [Google Scholar] [Crossref]
19. Casado, L., Mayo, V., Canadilla, A., Aguirre Acosta, L., Gomez-Cid, R., Sanz, A., ... & Grigorian, L. (2023). The effect of cardiosphere-derived cell extracellular vesicles embedded in cardiac matrix hydrogel on cardiac remodeling in a porcine model of ischemic cardiomyopathy. European Heart Journal. https://doi.org/10.1093/eurheartj/ehad655.3132 [Google Scholar] [Crossref]
20. Charlton, B. G., & Andras, P. (2005). Medical research funding may have over-expanded and be due for collapse. QJM: An International Journal of Medicine. https://doi.org/10.1093/qjmed/hci003 [Google Scholar] [Crossref]
21. Danish, M., & Sharma, R. (2023). Patent citations and knowledge spillovers: An empirical analysis of Indian patents. Asian Journal of Technology Innovation. https://doi.org/10.1080/19761597.2023.2268662 [Google Scholar] [Crossref]
22. Das, D., Jothimani, G., Banerjee, A., Dey, A. K., Duttaroy, A. K., & Pathak, S. (2024). A brief review on recent advances in diagnostic and therapeutic applications of extracellular vesicles in cardiovascular disease. The International Journal of Biochemistry & Cell Biology. https://doi.org/10.1016/j.biocel.2024.106616 [Google Scholar] [Crossref]
23. Deng, P., Liu, C., Chen, M., & Si, L. (2023). Knowledge domain and emerging trends in multimorbidity and frailty research from 2003 to 2023: A scientometric study using CiteSpace and VOSviewer. Health Economics Review. https://doi.org/10.1186/s13561-023-00460-9 [Google Scholar] [Crossref]
24. Ding, W. (2011). Development of intellectual property of communications enterprise and analysis of current situation of patents in emerging technology fields. https://doi.org/10.4018/JAPUC.2011040103 [Google Scholar] [Crossref]
25. Diomede, F., Guarnieri, S., Lanuti, P., Konstantinidou, F., Gatta, V., Rajan, T. S., ... & Pizzicannella, J. (2023). Extracellular vesicles (EVs): A promising therapeutic tool in heart tissue regeneration. Biofactors. https://doi.org/10.1002/biof.2025 [Google Scholar] [Crossref]
26. Dovgal, O., & Dovgal, G. (2020). Innovation as a dominant feature of global competitive leadership in the age of techno-globalism. https://doi.org/10.30525/978-9934-588-38-9-26 [Google Scholar] [Crossref]
27. Entezarkheir, M. (2019). Patent ownership fragmentation and market value: An empirical analysis. International Journal of Innovation Management. https://doi.org/10.1142/S1363919619500129 [Google Scholar] [Crossref]
28. Ernst, D. (2015). Global strategic patenting and innovation: Policy and research implications. Social Science Research Network. https://doi.org/10.2139/SSRN.2742700 [Google Scholar] [Crossref]
29. Espacenet. (n.d.). Patent search. Retrieved December 30, 2024, from https://worldwide.espacenet.com/patent/cpc-browser#!/CPC=A61Q19/00 [Google Scholar] [Crossref]
30. Fanaei‐Kahrani, Z., & Kaether, C. (2024). Asparagine614 determines the transport and function of the murine anti-aging protein Klotho. Cells. https://doi.org/10.3390/cells13201743 [Google Scholar] [Crossref]
31. Fink, C., Khan, M., & Zhou, H. (2016). Exploring the worldwide patent surge. Economics of Innovation and New Technology. https://doi.org/10.1080/10438599.2015.1055088 [Google Scholar] [Crossref]
32. Forman, D. E., & Pignolo, R. J. (2024). A pragmatic approach to introducing translational geroscience into the clinic: A paradigm based on the incremental progression of aging-related clinical research. The Journals of Gerontology: Series A. https://doi.org/10.1093/gerona/glae062 [Google Scholar] [Crossref]
33. Genovese, J., & Leonhardt, H. (2024). Klotho, an anti-aging protein with significant potential in regenerative medicine. Medical Research Archives. https://doi.org/10.55828/mrm-21-03 [Google Scholar] [Crossref]
34. Gevers. (2024). Patent landscaping: A full picture of patents. Retrieved from https://gevers.eu/blog/patent-landscaping-a-full-picture-of-patents/ [Google Scholar] [Crossref]
35. Giannouli, E. (2022). In the pursuit of longevity: Anti-aging substances, nanotechnological preparations, and emerging approaches. medRxiv. https://doi.org/10.1101/2022.03.20.22272670 [Google Scholar] [Crossref]
36. Guo, J., Huang, X., Dou, L., Yan, M., Shen, T., Tang, W., & Li, J. (2022). Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduction and Targeted Therapy. https://doi.org/10.1038/s41392-022-01251-0 [Google Scholar] [Crossref]
37. Gupta, M., Jaabir, M. S. M., Mohammad, A. A., & Gomathinayagam, R. (2023). Cellular reprogramming, transdifferentiation and alleviation of the aging pathology. Research Journal of Biotechnology. https://doi.org/10.25303/1902rjbt1270139 [Google Scholar] [Crossref]
38. Hernández-Melchor, D., López-Bayghen, E., & Padilla-Viveros, A. (2022). The patent landscape in the field of stem cell therapy: Closing the gap between research and clinic. F1000Research. https://doi.org/10.12688/f1000research.123799.1 [Google Scholar] [Crossref]
39. Hirlekar, R., & Patil, V. (2013). Research article: Novel anti-aging technologies and products. [Google Scholar] [Crossref]
40. Holgersson, M. (2012). Innovation and intellectual property: Strategic IP management and economics of technology. Social Science Research Network. [Google Scholar] [Crossref]
41. Huang, L., & Li, Y. (2011). Research on technological trajectories based on patent documents and related empirical study. https://doi.org/10.1109/ICMSE.2011.6070078 [Google Scholar] [Crossref]
42. InventionIP. (2024). Patent landscape analysis and search report. https://inventionip.com/patent-landscape-analysis/ [Google Scholar] [Crossref]
43. Ivanitskaya, L., Zikos, D., & Erzikova, E. (2024). A bibliometric analysis of eHealth scholarship (2000–2024): Multidisciplinary contributions and research trends. Journal of Medical Internet Research Preprints. https://doi.org/10.2196/preprints.60071 [Google Scholar] [Crossref]
44. Ivanova, J., Shorokhova, M., Pugovkina, N. A., Kozhukharova, I. V., Alekseenko, L. L., Guriev, N., ... & Lyublinskaya, O. (2024). Partial reprogramming exerts a rejuvenating effect on human mesenchymal stem cells that underwent replicative senescence in culture. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms252312533 [Google Scholar] [Crossref]
45. Jaalouk, D., Prasai, A., Goldberg, D. J., & Yoo, J. Y. (2024). Regulatory aspects of regenerative medicine in the United States and abroad. Dermatological Reviews. https://doi.org/10.1002/der2.244 [Google Scholar] [Crossref]
46. Jeong, S. K., Park, J. Y., Park, B. M., Yoo, K. S., Kim, S. W., & Shin, H. S. (2016). Compositions for anti-aging. [Google Scholar] [Crossref]
47. Ji, Z., Chen, S., Cheng, J., Qiu, Y. M., Wang, X., ... & Zhou, Y. (2024). Mapping the research trends and hotspots in vascular aging from 2003–2023: A bibliometric analysis. Heliyon. https://doi.org/10.1016/j.heliyon.2024.e38571 [Google Scholar] [Crossref]
48. Kalies, K., Knoepp, K., Wurmbrand, L., Dutzmann, J., & Sedding, D. (2024). Enhancing cellular regeneration through targeted pharmacological reprogramming of senescent endothelial cells. Cardiovascular Research. https://doi.org/10.1093/cvr/cvae088.141 [Google Scholar] [Crossref]
49. Kalyanasundaram Iyer, C., & Jain, A. K. (2024). Patent landscape of nanotechnology in healthcare. https://doi.org/10.2174/9789815256505124010013 [Google Scholar] [Crossref]
50. Kim, H. J., Jeong, Y. K., & Song, M. (2016). Content- and proximity-based author co-citation analysis using citation sentences. Journal of Informetrics. https://doi.org/10.1016/j.joi.2016.07.007 [Google Scholar] [Crossref]
51. Kitaeva, K. V., Solovyeva, V., Filin, I. Y., Mukhamedshina, Y. O., & Rizvanov, A. A. (2024). Possibilities of gene, cellular, and pharmacological approaches to correct age-related changes. Kazan Medical Journal. https://doi.org/10.17816/kmj624852 [Google Scholar] [Crossref]
52. Kraft, M., & Bermejo, S. (2024). Sinai SCENT TMC - Bronchoscopy Lung Collection v1. Protocols.io. https://doi.org/10.17504/protocols.io.bp2l628yrgqe/v1 [Google Scholar] [Crossref]
53. Kumar, N. (2024). Unveiling the emerging role of Klotho: A comprehensive narrative review of an anti-aging factor in human fertility. Current Protein & Peptide Science. https://doi.org/10.2174/0113892037329291240827113808 [Google Scholar] [Crossref]
54. Kwon, S. (2021). The prevalence of weak patents in the United States: A new method to identify weak patents and the implications for patent policy. Technology in Society. https://doi.org/10.1016/J.TECHSOC.2020.101469 [Google Scholar] [Crossref]
55. Latorre Barragán, M. F., García Cárdenas, F. R., & Culqui Sánchez, M. V. (2024). Stimulation of cellular longevity using CRISPR-Cas9 in aging-associated genes. Interamerican Journal of Health Sciences. https://doi.org/10.59471/ijhsc202498 [Google Scholar] [Crossref]
56. Le, C., Fan, W., Pan, X., & Zhu, X. (2022). Stem cells to reverse aging. Chinese Medical Journal. https://doi.org/10.1097/CM9.0000000000001984 [Google Scholar] [Crossref]
57. Lens.org. (2025). Lens Patent Search (Version 9.4.7). Retrieved January 2, 2025, from https://www.lens.org/lens/search/patent/list?q=(%22reverse%20aging*%22%20OR%20%22age%20reversal%22)%20AND%20((%22genetic%20therapies*%22%20OR%20(%22stem%20cell%20treatments%22%20OR%20(%22telomere%20extension%22%20OR%20%22cell%20rejuvenation%22)))%20AND%20classification_cpc:%20(C12N15%20AND%20(%2200*%22%20OR%20A61K45%22%20AND%20(%2200*%22%20OR%20(C12N2510%20AND%20(%2200*%22%20OR%20A61P39%22%20AND%20(%2200*%22%20OR%20(A61K31%20AND%20(%2200*%22%20OR%20A61K35%22%20AND%20%2200%22))))))). Licensed under CC BY-NC. [Google Scholar] [Crossref]
58. Léone, M., & Barzilai, N. (2024). An updated prioritization of geroscience-guided FDA-approved drugs repurposed to target aging. Medical Research Archives. https://doi.org/10.18103/mra.v12i2.5138 [Google Scholar] [Crossref]
59. Liu, B., Wang, J., Zhang, Y., Hu, M., Tian, H., Crețoiu, D., Li, G., & Xiao, J. (2024). Aging and rejuvenation of engineered cardiovascular tissues: From research to clinical application. The Journal of Cardiovascular Aging. https://doi.org/10.20517/jca.2024.11 [Google Scholar] [Crossref]
60. Liu, S., Mou, J., Zhao, C., Du, C., Liu, J., Bao, W., ... & Lei, Y. (2024). Combating cellular aging: Frontiers in biomaterials and therapies. ACS Materials Letters. https://doi.org/10.1021/acsmaterialslett.4c02108 [Google Scholar] [Crossref]
61. Macher, J. T., Rutzer, C., & Weder, R. (2023). The illusive slump of disruptive patents. [Google Scholar] [Crossref]
62. Madreiter-Sokolowski, C. T., Hiden, U., Krstić, J., Panzitt, K., Wagner, M., Enzinger, C., ... & Olschewski, A. (2024). Targeting organ-specific mitochondrial dysfunction to improve biological aging. Pharmacology & Therapeutics. https://doi.org/10.1016/j.pharmthera.2024.108710 [Google Scholar] [Crossref]
63. Mafu, M. (2023). Expired patents: An opportunity for higher education institutions. Frontiers in Research Metrics and Analytics. https://doi.org/10.3389/frma.2023.1115457 [Google Scholar] [Crossref]
64. Mandel, H. G., & Vesell, E. S. (2004). From progress to regression: Biomedical research funding. Journal of Clinical Investigation. https://doi.org/10.1172/JCI23245 [Google Scholar] [Crossref]
65. Mansfield, L. E., Ramponi, V., Gupta, K., Stevenson, T., Mathew, A. B., Barinda, A. J., Herbstein, F., & Morsli, S. (2024). Emerging insights in senescence: Pathways from preclinical models to therapeutic innovations. Aging. https://doi.org/10.1038/s41514-024-00181-1 [Google Scholar] [Crossref]
66. Mantravadi, P. K., Karunakaran, A. K., Renwick, C. J., Hudson, A. O., & Parthasarathy, A. (2019). The quest for novel antimicrobial compounds: Emerging trends in research, development, and technologies. The Journal of Antibiotics. https://doi.org/10.3390/ANTIBIOTICS8010008 [Google Scholar] [Crossref]
67. Manzoor, B. S. (2023). Age reversal: A new paradigm shift in medical sciences. Liaquat Medical Research Journal. https://doi.org/10.38106/lmrj.2023.5.2-01 [Google Scholar] [Crossref]
68. Marx, M., & Fuegi, A. (2023). Reliance on science. Zenodo. https://doi.org/10.5281/zenodo.7903131 [Google Scholar] [Crossref]
69. Masternak, M. M. (2023). Senescent cells as new pharmacological targets for age-related diseases and anti-aging therapy. Journal of Medical Sciences. https://doi.org/10.20883/medical.e907 [Google Scholar] [Crossref]
70. Maxwell, I., & Maxwell, N. J. L. (2022). A quantitative metric for research impact using patent citation analytics. World Patent Information. https://doi.org/10.1016/j.wpi.2022.102126 [Google Scholar] [Crossref]
71. Melo Alves, P. L., Nieri, V., de Campos Moreli, F., Constantino, E., de Souza, J., Oshima‐Franco, Y., & Grotto, D. (2024). Unveiling new horizons: Advancing technologies in cosmeceuticals for anti-aging solutions. Molecules. https://doi.org/10.3390/molecules29204890 [Google Scholar] [Crossref]
72. Moawad, M. H. E. D., Serag, I., Alkhawaldeh, M., Abbas, A., Sharaf, A., Alsalah, S., ... & Meshref, M. (2024). Exploring the mechanisms and therapeutic approaches of mitochondrial dysfunction in Alzheimer’s disease: An educational literature review. Molecular Neurobiology. https://doi.org/10.1007/s12035-024-04468-y [Google Scholar] [Crossref]
73. Mohd Tohit, F., & Haque, M. (2024). The new frontier of ageing: Innovations and insights in gerontology. Advances in Human Biology. https://doi.org/10.4103/aihb.aihb_110_24 [Google Scholar] [Crossref]
74. Morley, P., & Puhvel, M. (1984). Two authors reply. English Studies in Canada. https://doi.org/10.1353/ESC.1984.0040 [Google Scholar] [Crossref]
75. Mureti, M. M., Wang, B. M., Sun, Z.-G., Xu, K., & Aikeremu, D. (2024). Current research on epigenetic age and cellular senescence: A bibliometric and visual analysis. bioRxiv. https://doi.org/10.1101/2024.02.13.580124 [Google Scholar] [Crossref]
76. Nekrasov, S. A., & Mironov, V. N. (2019). Patent activity as an indicator determining the vector of development of the world economy. https://doi.org/10.33293/1609-1442-2019-2(85)-115-130 [Google Scholar] [Crossref]
77. Ore, A., James, M., Angelastro, C., & Giulivi, C. (2024). Integrating mitochondrial biology into innovative cell therapies for neurodegenerative diseases. Brain Sciences. https://doi.org/10.3390/brainsci14090899 [Google Scholar] [Crossref]
78. Oshimura, M., Tabata, T., Uno, N., Takata, S., Hichiwa, G., Kanazawa, I., ... & Kazuki, Y. (2024). Rejuvenation of human mesenchymal stem cells using a nonintegrative and conditionally removable Sendai virus vector. Dental Science Reports. https://doi.org/10.1038/s41598-024-74757-y [Google Scholar] [Crossref]
79. Pasupuleti, M. K. (2024). The future of life: Bioprinting and biotechnological advances for age reversal. National Engineering Sciences Exchange. https://doi.org/10.62311/nesx/7288 [Google Scholar] [Crossref]
80. Poursistany, H., Tabibi Azar, S., Tabibi Azar, M., & Raeisi, S. (2023). The current and emerging Klotho-enhancement strategies. Biochemical and Biophysical Research Communications. https://doi.org/10.1016/j.bbrc.2023.149357 [Google Scholar] [Crossref]
81. Powers, T. L., & Leal, R. P. (1994). Is the U.S. innovative? A cross-national study of patent activity. Management International Review. [Google Scholar] [Crossref]
82. Prud’homme, G. J., & Wang, Q. (2024). Anti-inflammatory role of the Klotho protein and relevance to aging. Cells. https://doi.org/10.3390/cells13171413 [Google Scholar] [Crossref]
83. Read, C. Y., Green, R. C., & Smyer, M. A. (2008). Aging, biotechnology, and the future. [Google Scholar] [Crossref]
84. Rout, S. K. (2018). A brief review on intellectual property rights with special attention on patent. https://doi.org/10.21839/JAAR.2018.V3I3.147 [Google Scholar] [Crossref]
85. Sahu, S., Lu, J., Shao, Y., Wang, C., Tsuji, M., Nuñez Delicado, E., ... & Belmonte, J. C. I. (2024). Targeted partial reprogramming of age-associated cell states improves markers of health in mouse models of aging. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.adg1777 [Google Scholar] [Crossref]
86. Schulz, R., Wahl, H.-W., Matthews, J. T., Dabbs, A. D., Beach, S. R., & Czaja, S. J. (2015). Advancing the aging and technology agenda in gerontology. Gerontologist. https://doi.org/10.1093/GERONT/GNU071 [Google Scholar] [Crossref]
87. Shaik, F. (2024). Advancements in regenerative medicine: Present approaches, emerging strategies, and future perspectives. International Journal of Advanced Research. https://doi.org/10.21474/ijar01/19638 [Google Scholar] [Crossref]
88. Sharma, V., Nunkoo, A., Jurcău, A. C., Diaconu, R. G., Jurcău, M. C., & Lunardelli, M. L. (2024). The quest for eternal youth: Hallmarks of aging and rejuvenating therapeutic strategies. Advances in Cardiovascular Diseases. https://doi.org/10.3390/biomedicines12112540 [Google Scholar] [Crossref]
89. Shiraishi, M., Sasaki, D., Hibino, M., Takeda, A., Harashima, H., & Yamada, Y. (2024). Human cardiosphere-derived cells with activated mitochondria for better myocardial regenerative therapy. Journal of Controlled Release. https://doi.org/10.1016/j.jconrel.2024.01.058 [Google Scholar] [Crossref]
90. Sinclair, D. A. (2023). Discovery of chemical means to reverse aging and restore cellular function. Aging.https://www.aging-us.com/news-room/NEW-STUDY-Discovery-of-Chemical-Means-to-Reverse-Aging-and-Restore-Cellular-Function [Google Scholar] [Crossref]
91. Siu, C. P. Y. (2024). Stakeholder analysis within the innovation ecosystem: A gerontechnology case in Hong Kong. Gerontechnology. https://doi.org/10.4017/gt.2024.23.1.861.08 [Google Scholar] [Crossref]
92. Sixsmith, J. (2022). Key ethical challenges in the AgeTech sector. Proceedings of the ACM. https://doi.org/10.1145/3529190.3534759 [Google Scholar] [Crossref]
93. Somasundaram, I., Jain, S. M., Jourde-Chiche, N., Pathak, S., Banerjee, A., Rawat, S., ... & Sharma, N. (2024). Mitochondrial dysfunction and its association with age-related disorders. Frontiers in Physiology. https://doi.org/10.3389/fphys.2024.1384966 [Google Scholar] [Crossref]
94. Song, J., Zhan, K., Li, J., Cheng, S., Li, X., & Yu, L. (2024). Bibliometric and visual analyses of research on the links between stroke and exosomes from 2008 to 2023. Medicine. https://doi.org/10.1097/md.0000000000039498 [Google Scholar] [Crossref]
95. Tabassum, H. (2023). Reverse aging: A boon to longevity. HSOA Journal of Gerontology & Geriatric Medicine. https://doi.org/10.24966/ggm-8662/100160 [Google Scholar] [Crossref]
96. Tang, S., Cai, P., He, H., Tian, Y., Hao, R., Liu, X., ... & Li, X. (2024). Global trends in the clinical utilization of exosomes in dermatology: A bibliometric analysis. Frontiers in Medicine. https://doi.org/10.3389/fmed.2024.1462085 [Google Scholar] [Crossref]
97. Toews, M. (2015). Commercialisation of human genetic research. Wiley Online Library. https://doi.org/10.1002/9780470015902.A0005651.PUB2 [Google Scholar] [Crossref]
98. TT Consultants. (2024). Expert guide to patent landscape analysis. https://ttconsultants.com/patents-as-your-gps-a-guide-to-patent-landscape-analysis [Google Scholar] [Crossref]
99. Unfried, M. (2024). Advancing longevity research through decentralized science. Frontiers in Aging. https://doi.org/10.3389/fragi.2024.1353272 [Google Scholar] [Crossref]
100. Valacchi, G. (2018). Innovation and patent protection: A multicountry study on the determinants of R&D offshoring. https://doi.org/10.1007/978-981-10-5424-2_7 [Google Scholar] [Crossref]
101. van Eck, N. J., & Waltman, L. (2010). VOSviewer: A visualization software for bibliometric networks. Journal of the American Society for Information Science and Technology, 61(5), 1–17. https://doi.org/10.1002/asi.21279 [Google Scholar] [Crossref]
102. Vasil’chenko, N. V., Vetoshkin, А. А., & Gusev, S. S. (2024). Cluster analysis and visualization of keywords in papers by international researchers on bioactive drugs in the treatment of rotator cuff injuries. Mediko-biologicheskie i social'no-psikhologicheskie problemy bezopasnosti v chrezvychainykh situatsiiakh. https://doi.org/10.25016/2541-7487-2024-0-2-99-112 [Google Scholar] [Crossref]
103. Veer, T., & Blind, K. (2012). Does competitive strategy protect companies from intellectual property free riding? Social Science Research Network. https://doi.org/10.2139/SSRN.2037791 [Google Scholar] [Crossref]
104. Vijg, J., & de Grey, A. D. N. J. (2014). Innovating aging: Promises and pitfalls on the road to life extension. Gerontology. https://doi.org/10.1159/000357670 [Google Scholar] [Crossref]
105. Van Eck, N. J., & Waltman, L. (2009–2023). VOSviewer (Version 1.6.20) [Computer software]. https://www.vosviewer.com [Google Scholar] [Crossref]
106. Worsley, A., & Twist, P. (2005). Patents, string theory, anti-aging, and the warp drive. Patently-O. https://patentlyo.com/patent/2005/03/patents_string_.html [Google Scholar] [Crossref]
107. Yanagisawa, T., & Guellec, D. (2009). The emerging patent marketplace. Research Papers in Economics. https://doi.org/10.1787/218413152254 [Google Scholar] [Crossref]
108. Yang, X., & Yu, X. (2019). Identifying patent risks in technological competition: A patent analysis of the artificial intelligence industry. https://doi.org/10.1109/ICITM.2019.8710719 [Google Scholar] [Crossref]
109. Zhang, B., & Gladyshev, V. N. (2020). How can aging be reversed? Exploring rejuvenation from a damage-based perspective. GGN2. https://doi.org/10.1002/GGN2.10025 [Google Scholar] [Crossref]
110. Zhang, Y. (2012). New frontiers of aging reversal and aging-related diseases reprogramming. Advancements in Genetic Engineering. https://doi.org/10.4172/2169-0111.1000E101 [Google Scholar] [Crossref]
111. Zhang, Y., Ma, S., Chang, W., Yu, W., & Zhang, L. (2024). Nanozymes targeting mitochondrial repair in disease treatment. Journal of Biotechnology. https://doi.org/10.1016/j.jbiotec.2024.08.008 [Google Scholar] [Crossref]
112. Zhang, Z., Yang, R., Zi, Z., & Liu, B. (2024). A new clinical age of aging research. Trends in Endocrinology and Metabolism. https://doi.org/10.1016/j.tem.2024.08.004 [Google Scholar] [Crossref]
113. Zocchi, M. L., Vindigni, V., Pagani, A., Pirro, O., Conti, G., Sbarbati, A., & Bassetto, F. (2019). Regulatory, ethical, and technical considerations on regenerative technologies and adipose-derived mesenchymal stem cells. European Journal of Plastic Surgery. https://doi.org/10.1007/s00238-019-01571-5 [Google Scholar] [Crossref]
114. Zubkova, E. I., Dergilev, K., Beloglazova, I., Kalinin, A., Guseva, A., Andreev, A., ... & Parfyonova, Y. (2023). Paracrine responses of cardiosphere-derived cells to cytokines and TLR ligands: A comparative analysis. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms242417278 [Google Scholar] [Crossref]
115. (2023). Canonical and novel strategies to delay or reverse aging. https://doi.org/10.1016/b978-0-323-91617-2.00005-5 [Google Scholar] [Crossref]
116. (2023). Patent analysis: An approach using bibliometrix. https://doi.org/10.5748/19contecsi/pse/itm/6962 [Google Scholar] [Crossref]
117. (2023). The patent landscape in the field of stem cell therapy: Closing the gap between research and clinic. F1000Research. https://doi.org/10.12688/f1000research.123799.2 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Measuring Waste of Patient Time in Health Care at Non-Digitized Hospital: An Observational Study in Bangabandhu Sheikh Mujib Medical University, Bangladesh
- Reaffirming Clinical Confidence in Atorvastatin Therapy: A Digital Outreach Case Study from Tamil Nadu, India
- Clinical Manifestations and Therapeutic Response in a Patient with Hypothyroidism: A Case Report
- Eranda (Ricinus Communis) In Gridhrasi (Sciatica): Classical Rationale, Pharmacology and Clinical Evidence- A Narrative Literature Review
- Magnetotherapy in Pain Management: Mechanisms, Clinical Applications, and Future Perspectives – A Review