AI in Healthcare: Mini-Review of AI Transforming Healthcare Globally & Ethically

Authors

Dr. S. S. Begum

Department of Chemistry, Gargaon College, Simaluguri, Assam: 785686 (India)

Dr. S. Manham

Department of History, Gargaon College, Simaluguri, Assam: 785686 (India)

Article Information

DOI: 10.51244/IJRSI.2025.120800254

Subject Category: Public Health

Volume/Issue: 12/9 | Page No: 2881-2888

Publication Timeline

Submitted: 2025-09-23

Accepted: 2025-09-29

Published: 2025-10-03

Abstract

Artificial Intelligence (AI) is no longer just a futuristic concept—it has become a trusted partner in transforming healthcare around the world. Today, AI quietly works alongside doctors, nurses, and healthcare teams, streamlining everything from diagnosing illnesses to managing hospital operations. In clinics and hospitals, AI-powered tools analyze medical images, genetic data, and patient histories with remarkable speed and accuracy. This means diseases like cancer, heart conditions, and neurological disorders can often be detected far earlier than before, giving patients a much better chance at successful treatment. For example, AI-assisted radiology can flag unusual patterns in X-rays, MRIs, or CT scans in just seconds, helping doctors make faster, more confident decisions. In everyday primary care, AI acts like a digital co-pilot—suggesting tests, offering evidence-based treatment options, and even pulling in data from wearable devices or electronic health records to personalize care. One of the biggest breakthroughs in recent times is AI’s role in personalized medicine. By combining genetic information with lifestyle and medical history, AI helps design treatment plans tailored to each patient’s unique needs. AI has become a game changer for drug discovery and clinical trials. It can simulate how molecules interact, identify promising treatments, and even suggest new uses for existing medicines—speeding up the process of getting life-saving drugs to market, thus enabling a more proactive, precise, and compassionate healthcare system.

Keywords

AI ,Healthcare, Transforming , Globally , Ethically

Downloads

References

1. Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138-52160. [Google Scholar] [Crossref]

2. Amann, J., Blasimme, A., Vayena, E., Frey, D., & Madai, V. I. (2020). Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Medical Informatics and Decision Making, 20(1), 310. [Google Scholar] [Crossref]

3. Angraal, S., Krumholz, H. M., & Schulz, W. L. (2020). Blockchain technology: Applications in healthcare. Circulation: Cardiovascular Quality and Outcomes, 13(7), e006025. [Google Scholar] [Crossref]

4. Bohr, A., & Memarzadeh, K. (2020). The rise of artificial intelligence in healthcare applications. In Artificial Intelligence in Healthcare (pp. 25-60). Academic Press. [Google Scholar] [Crossref]

5. Cabitza, F., Rasoini, R., & Gensini, G. F. (2017). Unintended consequences of machine learning in medicine. JAMA, 318(6), 517-518. [Google Scholar] [Crossref]

6. European Commission. (2021). Proposal for a regulation of the European Parliament and of the Council laying down harmonised rules on artificial intelligence (Artificial Intelligence Act). COM(2021) 206 final. [Google Scholar] [Crossref]

7. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118. [Google Scholar] [Crossref]

8. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24-29. [Google Scholar] [Crossref]

9. Food and Drug Administration (FDA). (2021). Artificial intelligence and machine learning (AI/ML) software as a medical device. U.S. Department of Health and Human Services. [Google Scholar] [Crossref]

10. Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Dauméé III, H., & Crawford, K. (2021). Datasheets for datasets. Communications of the ACM, 64(12), 86-92. [Google Scholar] [Crossref]

11. General Data Protection Regulation (GDPR). (2016). Regulation (EU) 2016/679 of the European Parliament and of the Council. Official Journal of the European Union, L119, 1-88. [Google Scholar] [Crossref]

12. Ghassemi, M., Oakden-Rayner, L., & Beam, A. L. (2021). The false hope of current approaches to explainable artificial intelligence in health care. The Lancet Digital Health, 3(11), e745-e750. [Google Scholar] [Crossref]

13. Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., ... & Webster, D. R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402-2410. [Google Scholar] [Crossref]

14. He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30-36. [Google Scholar] [Crossref]

15. Jiménez-Luna, J., Grisoni, F., & Schneider, G. (2020). Drug discovery with explainable artificial intelligence. *Nature Machine Intelligence, 2(10), 573-584. [Google Scholar] [Crossref]

16. Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230-243. [Google Scholar] [Crossref]

17. Kaissis, G. A., Makowski, M. R., Rückert, D., & Braren, R. F. (2020). Secure, privacy-preserving and federated machine learning in medical imaging. Nature Machine Intelligence, 2(6), 305-311. [Google Scholar] [Crossref]

18. Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17(1), 195. [Google Scholar] [Crossref]

19. Kononenko, I. (2001). Machine learning for medical diagnosis: History, state of the art and perspective. Artificial Intelligence in Medicine, 23(1), 89-109. [Google Scholar] [Crossref]

20. The Lancet Global Health. (2020). Artificial intelligence for global health. The Lancet Global Health, 8(7), e875. [Google Scholar] [Crossref]

21. Lekadir, K., Feragen, A., Fofanah, A. J., Frangi, A. F., Buyx, A., Emelie, A., ... & Sanz, J. (2022). FUTURE-AI: Guiding principles and consensus recommendations for trustworthy artificial intelligence in medical imaging. arXiv preprint arXiv:2209.02435. [Google Scholar] [Crossref]

22. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88. [Google Scholar] [Crossref]

23. McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., ... & Shetty, S. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89-94. [Google Scholar] [Crossref]

24. Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., ... & Gebru, T. (2019). Model cards for model reporting. In Proceedings of the Conference on Fairness, Accountability, and Transparency (pp. 220-229). [Google Scholar] [Crossref]

25. Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447-453. [Google Scholar] [Crossref]

26. Panch, T., Mattie, H., & Celi, L. A. (2019). The “inconvenient truth” about AI in healthcare. NPJ Digital Medicine, 2*(1), 77. [Google Scholar] [Crossref]

27. Price, W. N., & Cohen, I. G. (2019). Privacy in the age of medical big data. Nature Medicine, 25(1), 37-43. [Google Scholar] [Crossref]

28. Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380(14), 1347-1358. [Google Scholar] [Crossref]

29. Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., ... & Sundberg, P. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, 1*(1), 18. [Google Scholar] [Crossref]

30. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Lungren, M. P. (2017). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. *arXiv preprint arXiv:1711.05225. [Google Scholar] [Crossref]

31. Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206-215. [Google Scholar] [Crossref]

32. Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1589-1604. [Google Scholar] [Crossref]

33. Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M., ... & Collins, J. J. (2020). A deep learning approach to antibiotic discovery. Cell, 180(4), 688-702. [Google Scholar] [Crossref]

34. Tonekaboni, S., Joshi, S., McCradden, M. D., & Goldenberg, A. (2019). What clinicians want: Contextualizing explainable machine learning for clinical end use. Proceedings of Machine Learning Research, 106, 359-380. [Google Scholar] [Crossref]

35. Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56. [Google Scholar] [Crossref]

36. Wahl, B., Cossy-Gantner, A., Germann, S., & Schwalbe, N. R. (2018). Artificial intelligence (AI) and global health: How can AI contribute to health in resource-poor settings? BMJ Global Health, 3(4), e000798. [Google Scholar] [Crossref]

37. Zech, J. R., Badgeley, M. A., Liu, M., Costa, A. B., Titano, J. J., & Oermann, E. K. (2018). Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. PLOS Medicine, 15(11), e1002683. [Google Scholar] [Crossref]

38. Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A., Veselov, M. S., Aladinskiy, V. A., Aladinskaya, A. V., ... & Aspuru-Guzik, A. (2019). Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology, 37(9), 1038-1040. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles