Biofuels and Tribology: Pathways Toward Sustainable Engine Performance
Authors
Mechanical Engineering Department, Gandhinagar Institute of Technology, Gandhinagar University 382721 (India)
Mechanical Engineering Department, Gandhinagar Institute of Technology, Gandhinagar University 382721 (India)
Mechanical Engineering Department, Gandhinagar Institute of Technology, Gandhinagar University 382721 (India)
Article Information
DOI: 10.51244/IJRSI.2025.12110067
Subject Category: Engineering & Technology
Volume/Issue: 12/11 | Page No: 749-760
Publication Timeline
Submitted: 2025-10-30
Accepted: 2025-11-05
Published: 2025-12-09
Abstract
The rapid increase in automobile usage has accelerated the depletion of fossil fuels and contributed significantly to environmental degradation. This scenario highlights the urgent need for alternative energy resources that can meet growing energy demands while reducing harmful emissions from conventional fuels. Among the various alternatives, biofuels have emerged as a promising option for internal combustion engines. Numerous short-term engine tests using biofuels have shown encouraging results; however, challenges persist in long-term engine durability tests, which often reveal issues such as excessive carbon deposition and contamination of lubricating oils, ultimately leading to engine failure.
This review aims to evaluate the tribological feasibility of biofuels in transportation applications, as their tribological performance plays a critical role in engine reliability and efficiency. The discussion focuses on various tribological aspects, including material compatibility, long-term endurance, wear behavior, and frictional characteristics. A detailed analysis of friction and wear parameters is presented, covering both compression ignition and spark ignition engines, with particular attention to the use of biodiesels, biofuels, and bio-oils as potential lubricants.
Rather than introducing new experimental findings, this review consolidates and critically analyzes existing research, outlining past developments and highlighting future perspectives in the field of biofuel tribology.
Keywords
Biofuels, Tribology, Pathways, Sustainable, Engine
Downloads
References
1. Glaeser, W. A. Characterization of Tribological Materials. Momentum Press; 2010. [Google Scholar] [Crossref]
2. Schmid, S. R. Manufacturing tribology. Encycl. Tribol. 2013:2159–2164. [Google Scholar] [Crossref]
3. Becker, E. P. Trends in tribological materials and engine technology. Tribol. Int. 2004;37(7):569–575. [Google Scholar] [Crossref]
4. Spikes, H. Tribology research in the twenty-first century. Tribol. Int. 2001;34(12):789–799. [Google Scholar] [Crossref]
5. Fessler, R. US Department of Energy workshop on industrial research needs for reducing friction and wear. Argonne National Laboratory; 1999. [Google Scholar] [Crossref]
6. Nakasa, M. Engine friction overview. Proc. Int. Tribol. Conf., Yokohama, Japan; 1995. [Google Scholar] [Crossref]
7. Tung, S. C., McMillan, M. L. Automotive tribology: overview of current advances and challenges. Tribol. Int. 2004;37(7):517–536. [Google Scholar] [Crossref]
8. Taylor, C. M. Automobile engine tribology—design considerations for efficiency and durability. Wear 1998;221(1):1–8. [Google Scholar] [Crossref]
9. Bartz, W. J. Lubricants and the environment. Tribol. Int. 1998;31(1):35–47. [Google Scholar] [Crossref]
10. Dotterer, G. O., Hellmuth, W. W. Differential infrared analysis of engine oil chemistry in sequence V tests, road tests, and other laboratory engine tests. Lubr. Eng. 1985;41(2):89–97. [Google Scholar] [Crossref]
11. Smolenski, D. J., Schwartz, S. E. Automotive engine-oil condition monitoring. Lubr. Eng. 1994;50(9). [Google Scholar] [Crossref]
12. Federico, M. Effects of different biofuel blends on performance and emissions of an automotive diesel engine. Fuel 2015;159:614–627. [Google Scholar] [Crossref]
13. Mofijur, M., Masjuki, H. H., Kalam, M. A., Rahman, S. A., Mahmudul, H. M. Energy scenario and biofuel policies in ASEAN countries. Renew. Sustain. Energy Rev. 2015;46:51–61. [Google Scholar] [Crossref]
14. Nanthagopal, K., Pal, A., Sharma, S., Samanchi, C., Sathyanarayanan, K., Elango, T. Emissions and combustion of a CI engine using waste cooking oil methyl ester blends. Alexandria Eng. J. 2014;53(2):281–287. [Google Scholar] [Crossref]
15. Naik, S. N., Goud, V. V., Rout, P. K., Dalai, A. K. First and second generation biofuels: a review. Renew. Sustain. Energy Rev. 2010;14(2):578–597. [Google Scholar] [Crossref]
16. Hamelinck, C., van den Broek, R., Rice, B., Gilbert, A., Ragwitz, M., Toro, F. Liquid Biofuels Strategy Study for Ireland. Sustainable Energy Ireland; 2004. [Google Scholar] [Crossref]
17. Vallinayagam, R., Vedharaj, S., Yang, W. M., Roberts, W. L., Dibble, R. W. Feasibility of LVLC fuels in diesel engines: a review. Renew. Sustain. Energy Rev. 2015;51:1166–1190. [Google Scholar] [Crossref]
18. No, S. Y. Inedible vegetable oils and their derivatives as alternative diesel fuels: a review. Renew. Sustain. Energy Rev. 2011;15(1):131–149. [Google Scholar] [Crossref]
19. Fazal, M. A., Haseeb, A. S. M. A., Masjuki, H. H. Biodiesel feasibility study: material compatibility, performance, emissions, durability. Renew. Sustain. Energy Rev. 2011;15:1314–1324. [Google Scholar] [Crossref]
20. Al-Dawody, M. F., Bhatti, S. K. Optimization to reduce biodiesel NOx effect in diesel engines. Energy Convers. Manage. 2013;68:96–104. [Google Scholar] [Crossref]
21. Fontana, M. G. Corrosion Engineering. Tata McGraw-Hill; 2005. [Google Scholar] [Crossref]
22. Nadkarni, R. K. Elemental analysis. In: Totten, G. E. (Ed.), Fuels and Lubricants Handbook. ASTM International; 707–716. [Google Scholar] [Crossref]
23. Fazal, M. A., Haseeb, A. S. M. A., Masjuki, H. H. Degradation of automotive materials in palm biodiesel. Energy 2012;40(1):76–83. [Google Scholar] [Crossref]
24. Fazal, M. A., Haseeb, A. S. M. A., Masjuki, H. H. Corrosion mechanism of copper in palm biodiesel. Corros. Sci. 2013;67:50–59. [Google Scholar] [Crossref]
25. Fazal, M. A., Haseeb, A. S. M. A., Masjuki, H. H. Corrosive characteristics of diesel vs palm biodiesel. Fuel Process. Technol. 2010;91(10):1308–1315. [Google Scholar] [Crossref]
26. Agarwal, A. K. Lubricating oil tribology of a biodiesel-fuelled CI engine. In: ASME ICE Division Spring Technical Conference; 2003:751–765. [Google Scholar] [Crossref]
27. Booser, E. R. Tribology Data Handbook. CRC Press; 1997. [Google Scholar] [Crossref]
28. Kwon, O. K., Kong, H. S., Kim, C. H., Oh, P. K. Condition monitoring of IC engines. Tribol. Int. 1987;20(3):153–159. [Google Scholar] [Crossref]
29. Booser, E. R. CRC Handbook of Lubrication: Vol. 2. CRC Press. [Google Scholar] [Crossref]
30. Booser, E. R. CRC Handbook of Lubrication and Tribology: Vol. 3. CRC Press; 1993. [Google Scholar] [Crossref]
31. Jones, M. H. Ferrography applied to diesel engine oil analysis. Wear 1979;56:93–103. [Google Scholar] [Crossref]
32. Pocock, G., Courtney, S. J. Quantitative aspects of ferrography. Wear 1981;67:287–301. [Google Scholar] [Crossref]
33. Hofman, M. V., Johnson, J. H. Development of ferrography for diesel wear studies. Wear 1977;44:183–199. [Google Scholar] [Crossref]
34. Ekanem, E. J., Lori, J. A., Thomas, S. A. Wear metals in used oil via FAAS. Talanta 1977;44:2103–2108. [Google Scholar] [Crossref]
35. Reis, B. F., et al. Flow system for Cu, Cr, Fe, Pb in oils using flame AAS. Talanta 2004;64:1220–1225. [Google Scholar] [Crossref]
36. Agarwal, A. K. (2005). Experimental investigations of the effect of biodiesel utilization on lubricating oil tribology in diesel engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 219, 703–713. [Google Scholar] [Crossref]
37. Prateepchaikul, G., & Apichato, T. (2003). Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil. Songklanakarin Journal of Science and Technology, 25(3), 317–326. [Google Scholar] [Crossref]
38. Agarwal, A. K., & Dhar, A. (2009). Karanja oil utilization in a direct-injection engine by pre-heating. Part 2: Experimental investigations of engine durability and lubricating oil properties. Proceedings of the IMechE Part D: Journal of Automobile Engineering, 224(1), 85–97. [Google Scholar] [Crossref]
39. Arumugam, S., Sriram, G., & Ellappan, R. (2014). Bio-lubricant–biodiesel combination of rapeseed oil: An experimental investigation on engine oil tribology, performance, and emissions of variable compression engine. Energy, 72, 618–627. [Google Scholar] [Crossref]
40. Haseeb, A. S. M. A., Fazal, M. A., Jahirul, M. I., & Masjuki, H. H. (2011). Compatibility of automotive materials in biodiesel: A review. Fuel, 90, 922–931. [Google Scholar] [Crossref]
41. Fort, F. E., & Blumberg, P. N. (1982). Performance and durability of a turbocharged diesel fueled with cottonseed oil blends. J ASAE Publ. International Conference on Plant and Vegetable Oils as Fuels, Fargo, ND, USA. [Google Scholar] [Crossref]
42. Clark, S. J., Wagner, L., Schrock, M. D., & Piennaar, P. G. (1984). Methyl and ethyl soybean esters as renewable fuels for diesel engines. JACOS, 61(10), 1632–1643. [Google Scholar] [Crossref]
43. Kalam, M. A., & Masjuki, H. H. (2002). Biodiesel from palm oil – an analysis of its properties and potential. Biomass and Bioenergy, 23, 471–479. [Google Scholar] [Crossref]
44. Ramdhas, A. S., Jayaraj, S., & Muraleedharan, C. (2005). Characterization and effect of using rubber seed oil as fuel in compression ignition engines. Renewable Energy, 30, 795–803. [Google Scholar] [Crossref]
45. Sinha, S., & Agarwal, A. K. (2008). Experimental investigations of the tribological properties of lubricating oil from biodiesel-fuelled medium duty transportation CIDI engine. SAE International Journal of Fuels and Lubricants, 1(1), 01–1385. [Google Scholar] [Crossref]
46. Pandey, A., & Nandgonkar, M. (2010). Experimental investigation of the effect of esterified Karanja oil biodiesel on lubricating oil and wear of a 780 hp military CIDI engine. SAE Technical Paper 2010-01-1521. [Google Scholar] [Crossref]
47. Sinha, S., & Agarwal, A. K. (2010). Effect of biodiesel utilization on lubricating oil degradation and wear of a transportation CIDI engine. ASME Journal of Engineering for Gas Turbines and Power, 132, 042801–42811. [Google Scholar] [Crossref]
48. Celik, I., & Aydin, O. (2011). Effects of B100 biodiesel on injector and pump piston. Tribology Transactions, 54, 424–431. [Google Scholar] [Crossref]
49. Dhar, A., & Agarwal, A. K. (2014). Effect of Karanja biodiesel blend on engine wear in a diesel engine. Fuel, 134, 81–89. [Google Scholar] [Crossref]
50. Liaquat, A. M., Masjuki, H. H., Kalam, M. A., & Fattah, I. M. R. (2014). Impact of biodiesel blend on injector deposit formation. Energy, 72, 813–823. [Google Scholar] [Crossref]
51. Nantha Gopal, K., & Thundil Karuppa Raj, R. (2016). Effect of pongamia oil methyl ester–diesel blend on lubricating oil degradation of DI compression ignition engine. Fuel, 165, 105–114. [Google Scholar] [Crossref]
52. Agarwal, A. K., Bijwe, J., & Das, L. M. (2003). Effect of biodiesel utilization on wear of vital parts in compression ignition engine. Journal of Engineering for Gas Turbines and Power, 125(2), 604–611. [Google Scholar] [Crossref]
53. Agarwal, A. K., Bijwe, J., & Das, L. M. (2003). Wear assessment in a biodiesel-fueled compression ignition engine. Journal of Engineering for Gas Turbines and Power, 125(3), 820–826. [Google Scholar] [Crossref]
54. Krahl, J., Munack, A., Schroder, O., & Ruschel, Y. (2010). 500 hours endurance test on a biodiesel running a EURO IV engine. SAE International Journal of Fuels and Lubricants, 3(2), 2010-01-2270. [Google Scholar] [Crossref]
55. Wander, P. R., Altafini, C. R., Colombo, C. L., & Perera, S. C. (2011). Durability studies of mono-cylinder CI engines operating with diesel, soy and castor oil methyl esters. Energy, 36, 3917–3923. [Google Scholar] [Crossref]
56. Agarwal, A. K., & Dhar, A. (2012). Wear, durability and lubricating oil performance of a straight vegetable oil (Karanja) blend fueled DI CI engine. Journal of Renewable and Sustainable Energy, 4, 063138. [Google Scholar] [Crossref]
57. Ku, Y., Lin, K., Chen, Y., & Liao, C. (2013). Impact on durability of heavy-duty diesel engine using 5% biodiesel. SAE International Journal of Fuels and Lubricants, 6(1). [Google Scholar] [Crossref]
58. Kumar, N., Varun, & Chauhan, S. R. (2015). Evaluation of endurance characteristics for a modified diesel engine running on jatropha biodiesel. Applied Energy, 155, 253–269. [Google Scholar] [Crossref]
59. Daryl, L. R., & Peterson, C. (1995). Biodiesel testing in two on-road pickups. SAE Technical Paper 952757. [Google Scholar] [Crossref]
60. Peterson, C. L., Thomson, J. C., Taberski, J. S., Reece, D. L., & Fleischman, G. (1999). Long-range on-road test with 20% rapeseed biodiesel. Journal of Applied Engineering in Agriculture, 15(2), 91–101. (Duplicate of 60 – kept for consistency) [Google Scholar] [Crossref]
61. Fraer, R., Dinh, H., Proc, K., McCormick, R. L., Chandler, K., & Buchholz, B. (2005). Operating experience and teardown analysis for engines operated on biodiesel blends (B20). SAE Technical Paper 2005-01-3641. [Google Scholar] [Crossref]
62. Proc, K., Barnitt, R., Hayes, R. R., Ratcliff, M., McCormick, R. L., & Ha, L. (2006). 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20). SAE Technical Paper 2006-01-3253. [Google Scholar] [Crossref]
63. Mazzoleni, C., Kuhns, H. D., Moosmüller, H., Witt, J., Nussbaum, N. J., & Chang, M. C. O. (2007). A case study of real-world tailpipe emissions for school buses using B20 biodiesel. Science of the Total Environment, 385, 146–159. [Google Scholar] [Crossref]
64. Agarwal, A. K., Srivastava, D. K., Dwivedi, D., Kawatra, G., Kumar, M. R., & Bhardwaj, O. P. (2008). Field trial of biodiesel (B100) and diesel-fuelled CRDI Euro-III SUVs under Indian conditions. SAE Technical Paper 2008-28-77. [Google Scholar] [Crossref]
65. Haseeb, A. S. M. A., Sia, S. Y., Fazal, M. A., & Masjuki, H. H. (2010). Effect of temperature on tribological properties of palm biodiesel. Energy, 35, 1460–1464. [Google Scholar] [Crossref]
66. Fazal, M. A., Haseeb, A. S. M. A., & Masjuki, H. H. (2014). A critical review on tribological compatibility of automotive materials in palm biodiesel. Energy Conversion and Management, 79, 180–186. [Google Scholar] [Crossref]
67. Wain, K. S., Perez, J. M., Chapman, E., & Boehman, A. L. (2005). Alternative and low sulfur fuel options: Boundary lubrication performance and potential problems. Tribology International, 38, 313–319. [Google Scholar] [Crossref]
68. Sappok, A. G., & Wong, V. W. (2008). Impact of biodiesel on ash emissions and lubricant properties affecting fuel economy and engine wear. SAE International Journal of Fuels and Lubricants, 1(1), 01–1395. [Google Scholar] [Crossref]
69. Ashok, B., Nanthagopal, K., Thundil Karuppa Raj, R., Bhasker, J. P., & Vignesh, D. S. (2017). Influence of injection timing and EGR of Calophyllum inophyllum methyl ester fuel in a CI engine. Fuel Processing Technology, 167, 18–30. [Google Scholar] [Crossref]
70. Mosarof, M. H., Kalam, M. A., Masjuki, H. H., Ashraful, A. M., Rashed, M. M., & Imdadul, H. K. (2015). Implementation of palm biodiesel based on economic aspects, performance, emission and wear characteristics. Energy Conversion and Management, 105, 617–629. [Google Scholar] [Crossref]
71. Poley, J. (1997). Tribology data handbook: Diesel engine used oil analysis. CRC Press. [Google Scholar] [Crossref]
72. Kinney, A. J., & Clemente, T. E. (2005). Modifying soybean oil for enhanced performance in biodiesel blends. Fuel Processing Technology, 86, 1137–1147. [Google Scholar] [Crossref]
73. Fazal, M. A., Haseeb, A. S. M. A., & Masjuki, H. H. (2013). Friction and wear characteristics of palm biodiesel. Energy Conversion and Management, 67, 251–256. [Google Scholar] [Crossref]
74. Drown, D. C., Harper, K., & Frame, E. (2001). Screening vegetable oil alcohol esters as fuel lubricity enhancers. JACOS, 78(6), 579–584. [Google Scholar] [Crossref]
75. Spedding, H., & Watkins, R. C. (1982). The antiwear mechanism of ZDDPs. Tribology International, 9–12. [Google Scholar] [Crossref]
76. 77. Monyem, A., & Van Gerpen, J. H. (2001). Effect of biodiesel oxidation on engine performance and emissions. Biomass and Bioenergy, 20, 317–325. [Google Scholar] [Crossref]
77. Lang, X., & Dalai, A. K. (2001). Preparation and evaluation of vegetable oil derived biodiesel esters as lubricity additives. Tribotest Journal, 8(2), 131–150. [Google Scholar] [Crossref]
78. Singh, B., Korstad, J., & Sharma, Y. C. (2012). Corrosion of CI engine parts by biodiesel and its inhibition: A critical review. Renewable and Sustainable Energy Reviews, 16, 3401–3408. [Google Scholar] [Crossref]
79. Fox, N. J., Tyrer, B., & Stachowiak, G. W. (2004). Boundary lubrication performance of free fatty acids in sunflower oil. Tribology Letters, 16(4), 275–281. [Google Scholar] [Crossref]
80. Geller, D. P., & Goodrum, J. W. (2004). Effects of fatty acid methyl esters on diesel fuel lubricity. Fuel, 83, 2351–2356. [Google Scholar] [Crossref]
81. Hu, J., Du, Z., Li, C., & Min, E. (2005). Lubrication properties of biodiesel as fuel lubricity enhancers. Fuel, 84, 1601–1606. [Google Scholar] [Crossref]
82. Demirbas, A. (2006). Biodiesel production via non-catalytic SCF method and characteristics. Energy Conversion and Management, 47, 2271–2282. [Google Scholar] [Crossref]
83. Pehan, S., Jerman Svoljšak, M., Kegl, M., & Kegl, B. (2009). Biodiesel influence on tribology characteristics of a diesel engine. Fuel, 88, 970–979. [Google Scholar] [Crossref]
84. Fang, H. L., Shawn, D. W., Yamaguchi, S., & Boons, M. (2007). Biodiesel impact on wear protection of engine oils. SAE Paper 2007-01-4141. [Google Scholar] [Crossref]
85. Bhale, P. V., Deshpande, N. V., & Thombre, S. B. (2008). Simulation of wear characteristics of cylinder liner ring combination with diesel and biodiesel. SAE Paper 2008-28-0107. [Google Scholar] [Crossref]
86. Monyem, A., Van Gerpen, J. H., & Canakci, M. (2001). Effect of timing and oxidation on biodiesel emissions. Transactions of the ASAE, 44(1), 35–42. [Google Scholar] [Crossref]
87. Dhar, A., & Agarwal, A. K. (2014). Effect of Karanja biodiesel on tribological properties of lubricating oil in CI engine. Fuel, 130, 112–119. [Google Scholar] [Crossref]
88. Tsuchiya, T., Shiotani, H., Goto, S., Sugiyama, G., & Maeda, A. (2006). Japanese standards for B5 diesel and its impact on corrosion. SAE Paper 2006-01-3303. [Google Scholar] [Crossref]
89. Maleque, A., & Abdulmumin, A. A. (2014). Tribocorrosion behaviour of biodiesel: A review. Tribology Online, 9, 10–20. [Google Scholar] [Crossref]
90. Mittelbach, M. G. S. (2001). Long storage stability of biodiesel made from rapeseed and used frying oil. Journal of the American Oil Chemists' Society, 78, 573–577. [Google Scholar] [Crossref]
91. Fazal, M. A., Haseeb, A. S. M. A., & Masjuki, H. H. (2011). Effect of corrosion inhibitors on cast iron in palm biodiesel. Fuel Processing Technology, 92(11), 2154–2159. [Google Scholar] [Crossref]
92. Yamane, K., Kawasaki, K., Sone, K., Hara, T., & Prakoso, T. (2006). Unsaturated FAME and thermal oxidation characteristics. Review of Automotive Engineering, 27, 593–600. [Google Scholar] [Crossref]
93. Sarin, A., Arora, R., Singh, N., Sharma, M., & Malhotra, R. (2009). Metal contaminants and oxidation stability of Jatropha biodiesel. Energy, 34, 1271–1275. [Google Scholar] [Crossref]
94. Christensen, E., & McCormick, R. L. (2014). Long-term storage stability of biodiesel and blends. Fuel Processing Technology, 128, 339–348. [Google Scholar] [Crossref]
95. Lapuerta, M., Sánchez-Valdepeñas, J., & Sukjit, E. (2014). Effect of humidity and hygroscopy on diesel fuel lubricity. Wear, 309, 200–207. [Google Scholar] [Crossref]
96. Zhang, X. (1996). Biodegradability of biodiesel in aquatic and soil environments (PhD dissertation). University of Idaho. [Google Scholar] [Crossref]
97. Zhang, X., Peterson, C., Reece, D., Moller, G., & Haws, R. (1998). Biodegradability of biodiesel in the aquatic environment. Transactions of the ASAE, 41, 1423–1430. [Google Scholar] [Crossref]
98. Fontaras, G., Karavalakis, G., Kousoulidou, M., Tzamkiozis, T., Ntziachristos, L., & Bakeas, E. (2009). Effects of biodiesel on passenger car fuel consumption and emissions. Fuel, 88, 1608–1617. [Google Scholar] [Crossref]
99. Geller, D. P., Adams, T. T., Goodrum, J. W., & Pendergrass, J. (2008). Storage stability of poultry fat–diesel mixtures. Fuel, 87, 92–102. [Google Scholar] [Crossref]
100. Kaul, S., Saxena, R. C., Kumar, A., Negi, M. S., & Bhatnagar, A. K. (2007). Corrosion behavior of biodiesel from Indian oils on diesel engine parts. Fuel Processing Technology, 88, 303–307. [Google Scholar] [Crossref]
101. Haseeb, A. S. M. A., Masjuki, H. H., Ann, L. J., & Fazal, M. A. (2010). Corrosion characteristics of copper and bronze in palm biodiesel. Fuel Processing Technology, 91, 329–334. [Google Scholar] [Crossref]
102. Kaminski, J., & Kurzydlowski, K. J. (2008). Impedance spectroscopy for corrosion resistance of steels in water–biodiesel. Journal of Corrosion Measurement, 6, 1–5. [Google Scholar] [Crossref]
103. Sgroi, M., Bollito, G., Saracco, G., & Specchia, S. (2005). BIOFEAT biodiesel processor: Study of feed system. Journal of Power Sources, 149, 8–14. [Google Scholar] [Crossref]
104. Jain, S., & Sharma, M. P. (2010). Stability of biodiesel and its blends: A review. Renewable and Sustainable Energy Reviews, 14, 667–685. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- The Impact Of UI/UX Design on User Trust and Task Completion in Civic Tech Platforms
- Solar Cell Photovoltaic Model Shell Sp 75
- Development of an Intelligent Traffic Management System to Address Visibility Obstruction at Urban Intersections: A Case Study of Ibadan Metropolis
- Optimum Placement of Facts Devices on an Interconnected Power Systems Using Particle Swarm Optimisation Technique
- Assessing Construction Transformation and Implication on Future Production Flow System