Fetal Tau Bias in iPSC -Derived Neurons, MAPT Mutant Mouse Models and Molecular Mechanisms Assessment for Integrative Analysis of Tau Pathology

Authors

Aditi Kaushik

European Cooperation in Science & Technology (COST), Brussels, (Belgium); Department of Biotechnology, NIILM University, Kaithal (India)

Richa Mor

Department of Biotechnology, NIILM University, Kaithal (India)

Sushila Kaura

Department of Pharmacology, OSG University, Hisar (India)

Apurv Kaushik

Department of Medicine, RPS Group, Mahendergarh (India)

Sapna Sharma

Department of Public Health, PGIVER, Jaipur (India)

Article Information

DOI: 10.51244/IJRSI.2025.12110120

Subject Category: Medicine

Volume/Issue: 12/11 | Page No: 1347-1356

Publication Timeline

Submitted: 2025-12-03

Accepted: 2025-12-10

Published: 2025-12-18

Abstract

Tauopathies, such as Alzheimer's disease and Frontotemporal Dementia, are caused by complex interactions between tau isoform imbalance, MAPT mutations, and harmful post-translational modifications. Despite significant breakthroughs, current human cellular models may not accurately reflect adult tau biology, limiting mechanistic knowledge and therapeutic translation. In this review, we draw on new knowledge from stem cell platforms, MAPT mutant mice models, and multi-omics investigations to identify important gaps and stakes in modeling tau pathology. Recent efforts using CRISPR-engineered human stem cell lines, NGN3-induced i3 neurons, and patient-derived iPSCs show great promise, but they consistently retain a fetal-like predominance of 3-repeat (3R) tau, limiting the ability to recapitulate adult 3R/4R tau ratios and age-associated tauopathy phenotypes. Organoid and multi-cell co-culture methods (such as RenVM and tri-cellular constructions) boost microenvironmental complexity, but are limited by developmental immaturity and variable tau isoform flipping. Complementary MAPT knock-in and transgenic mice models (e.g., P301L, P301S, V337M, S320F) provide robust in vivo mechanisms for tau misfolding, seeding, and propagation, while also revealing species-specific compensatory processes that differ from human neurodegeneration. At the molecular level, mass spectrometry based phosphoproteomics has revealed a coordinated network of tau post-translational modifications; phosphorylation, acetylation, and ubiquitination that converge on proline-rich and C-terminal regions to cause tau detachment from microtubules and aggregate. These findings highlight the necessity for integrated models that can capture both isoform regulation and combinatorial PTM landscapes. Together, these findings highlight a key translational gap that most human model systems fail to reach adult tau maturation, as animal models cannot fully mimic human-specific tau biology. We propose a paradigm that integrates sophisticated stem cell engineering, MAPT mutation-aligned mice models, and multi-omics profiling to create next-generation platforms for understanding tauopathy processes and accelerating therapeutics development.

Keywords

Tauopathy, Alzheimer’s disease, Frontotemporal Dementia, MAPT mutations

Downloads

References

1. Jiang, L., Roberts, R., Wong, M., Zhang, L., Webber, C. J., Libera, J., Wang, Z., Kilci, A., Jenkins, M., Ortiz, A. R., Dorrian, L., Sun, J., Sun, G., Rashad, S., Kornbrek, C., Daley, S. A., Dedon, P. C., Nguyen, B., Xia, W., Saito, T., et al. (2024). β-amyloid accumulation enhances microtubule associated protein tau pathology in an APPNL-G-F/MAPTP301S mouse model of Alzheimer's disease. Front. Neurosci, 18, 1372297. https://doi.org/10.3389/fnins.2024.1372297 [Google Scholar] [Crossref]

2. Wenger, K., Viode, A., Schlaffner, C. N., et al. (2023). Common mouse models of tauopathy reflect early but not late human disease. Mol. Neurodegener, 18(1), 10. https://doi.org/10.1186/s13024-023-00601-y [Google Scholar] [Crossref]

3. Yan, Y., Cook, C. N. (2023). Using mass spectrometry to validate mouse models of tauopathy. Mol. Neurodegener, 18(1), 22. https://doi.org/10.1186/s13024-023-00615-6 [Google Scholar] [Crossref]

4. Morito, T., Qi, M., Kamano, N., Sasaguri, H., Bez, S., Foiani, M., Duff, K., Benner, S., Endo, T., Hama, H., Kurokawa, H., Miyawaki, A., Mizuma, H., Sahara, N., Shimojo, M., Higuchi, M., Saido, T. C., & Watamura, N. (2025). Human MAPT knockin mouse models of frontotemporal dementia for the neurodegenerative research community. Cell Rep. Methods 5(4), 101024. https://doi.org/10.1016/j.crmeth.2025.101024 [Google Scholar] [Crossref]

5. Hong, X., Huang, L., Lei, F., Li, T., Luo, Y., Zeng, M., & Wang, Z. (2025). The role and pathogenesis of tau protein in Alzheimer’s disease. Biomolecules, 15(6), 824. https://doi.org/10.3390/biom15060824 [Google Scholar] [Crossref]

6. Parra Bravo, C., Giani, A. M., Madero-Perez, J., Zhao, Z., Wan, Y., Samelson, A. J., Wong, M. Y., Evangelisti, A., Cordes, E., Fan, L., Ye, P., Zhu, D., Pozner, T., Mercedes, M., Patel, T., Yarahmady, A., Carling, G. K., Sterky, F. H., Lee, V. M. Y., Lee, E. B., et al. (2024). Human iPSC 4R tauopathy model uncovers modifiers of tau propagation. Cell 187(10), 2446-2464.e22. https://doi.org/10.1016/j.cell.2024.03.015 [Google Scholar] [Crossref]

7. Baumann, K. (2024). Modelling tauopathies. Nat. Rev. Mol. Cell Biol, 25, 338. https://doi.org/10.1038/s41580-024-00734-y [Google Scholar] [Crossref]

8. Kühn, R., Mahajan, A., Canoll, P., & Hargus, G. (2021). Human induced pluripotent stem cell models of frontotemporal dementia with tau pathology. Front. Cell Dev. Biol, 9, 766773. https://doi.org/10.3389/fcell.2021.766773 [Google Scholar] [Crossref]

9. Samelson, A. J., Ariqat, N., McKetney, J., Rohanitazangi, G., Bravo, C. P., Bose, R., Travaglini, K. J., Lam, V. L., Goodness, D., Dixon, G., Marzette, E., Jin, J., Tian, R., Tse, E., Abskharon, R., Pan, H., Carroll, E. C., Lawrence, R. E., Gestwicki, J. E., Eisenberg, D., et al. (2024). CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis. bioRxiv 2023.06.16.545386. https://doi.org/10.1101/2023.06.16.545386 [Google Scholar] [Crossref]

10. Avila, J., Hernández, F., & Perry, G. (2025). Amyloid and tau pathologies cross-talk to promote Alzheimer's disease: novel mechanistic insights. Neuroscience, 582, 58-62. https://doi.org/10.1016/j.neuroscience.2025.07.025 [Google Scholar] [Crossref]

11. He, Z., Guo, J. L., McBride, J. D., Narasimhan, S., Kim, H., Changolkar, L., Zhang, B., Gathagan, R. J., Yue, C., Dengler, C., Stieber, A., Nitla, M., Coulter, D. A., Abel, T., Brunden, K. R., Trojanowski, J. Q., & Lee, V. M. (2018). Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat. Med, 24(1), 29-38. https://doi.org/10.1038/nm.4443 [Google Scholar] [Crossref]

12. Song, Z., Gatch, A. J., Sun, Y., & Ding, F. (2023). Differential binding and conformational dynamics of tau microtubule-binding repeats with a preformed amyloid-β fibril seed. ACS Chem. Neurosci, 14(7), 1321-1330. https://doi.org/10.1021/acschemneuro.3c00014 [Google Scholar] [Crossref]

13. Haut, F., Argyrousi, E. K., & Arancio, O. (2024). Re-arranging the puzzle between amyloid-beta and tau pathology: an APP-centric approach. Int. J. Mol. Sci, 25(1), 259. https://doi.org/10.3390/ijms25010259 [Google Scholar] [Crossref]

14. Mohan Kumar, D., & Talwar, P. (2025). Amyloid-β, tau, and α-synuclein protein interactomes as therapeutic targets in neurodegenerative diseases. Cell Mol. Neurobiol, 45, 84. https://doi.org/10.1007/s10571-025-01604-7 [Google Scholar] [Crossref]

15. Gorski, D., Evans, H., Allison, T., et al. (2025). Design and application of a Tau seed amplification assay for screening inhibitors of Tau seeding. Alzheimers Res. Ther, 17, 214. https://doi.org/10.1186/s13195-025-01855-y [Google Scholar] [Crossref]

16. Lopes, D. M., Wells, J. A., Ma, D., et al. (2024). Glymphatic inhibition exacerbates tau propagation in an Alzheimer’s disease model. Alzheimers Res. Ther, 16, 71. https://doi.org/10.1186/s13195-024-01439-2 [Google Scholar] [Crossref]

17. Yang, J., Shen, N., Shen, J., et al. (2024). Complicated role of post-translational modification and protease-cleaved fragments of tau in Alzheimer’s disease and other tauopathies. Mol. Neurobiol, 61, 4712-4731. https://doi.org/10.1007/s12035-023-03867-x [Google Scholar] [Crossref]

18. Gonzalez-Ortiz, F., Kac, P. R., Brum, W. S., et al. (2023). Plasma phospho-tau in Alzheimer’s disease: towards diagnostic and therapeutic trial applications. Mol. Neurodegener, 18(1), 18. https://doi.org/10.1186/s13024-023-00605-8 [Google Scholar] [Crossref]

19. Therriault, J., Woo, M. S., Salvadó, G., et al. (2024). Comparison of immunoassay- with mass spectrometry-derived p-tau quantification for the detection of Alzheimer’s disease pathology. Mol. Neurodegener, 19(1), 2. https://doi.org/10.1186/s13024-023-00689-2 [Google Scholar] [Crossref]

20. Penny, L. K., Lofthouse, R., Arastoo, M., et al. (2024). Considerations for biomarker strategies in clinical trials investigating tau-targeting therapeutics for Alzheimer’s disease. Transl. Neurodegener, 13, 25. https://doi.org/10.1186/s40035-024-00417-w [Google Scholar] [Crossref]

21. Mandal, P. K., Maroon, J. C., Garg, A., Arora, N. K., Bansal, R., Kaushik, A., Samkaria, A., Kumaran, G., & Arora, Y. (2023). Blood biomarkers in Alzheimer’s disease. ACS Chemical Neuroscience, 14(22), 3975-3978. https://doi.org/10.1021/acschemneuro.3c00641 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles