The Ethics of AI in Financial Planning: Bias, Transparency, and the Role of Human Judgment

Authors

Dolapo Achimugu

College of William & Mary, Raymond A Mason School of Business, Williamsburg, Virginia (US)

Chinaza Ukatu

College of William & Mary, Raymond A Mason School of Business, Williamsburg, Virginia (US)

Arinze E. Anaege

Department of Accounting, Kingsley Ozumba Mbadiwe University, Ideato (Nigeria)

Article Information

DOI: 10.51244/IJRSI.2025.1213CS001

Subject Category: Artificial Intelligence

Volume/Issue: 12/13 | Page No: 01-15

Publication Timeline

Submitted: 2025-09-10

Accepted: 2025-10-16

Published: 2025-10-15

Abstract

The fast-growing use of artificial intelligence (AI) has introduced new ethical issues in the financial services sector. Robo-advisors, loan algorithms, and automated financial instruments now make choices that impact people's lives substantially. These automated instruments may lack fairness, clarity, and human supervision. Without adequate checks, they could generate discriminatory decisions or erode trust in financial institutions. This paper sets forth a normative-ethical framework to help oversee the responsible use of AI in financial planning. The study identified a novel framework known as the EFT Model, which has four pillars: Ethical Design, Fairness, Transparency, and Human Oversight. The paper examines each principle in detail, illustrating it with practical examples like discriminatory loan approvals and unclear investment recommendations. Roles and accountability of key players such as developers, regulators, financial institutions, and customers are also clearly identified. The paper harmonizes the framework with existing regulations like the EU AI Act, the GDPR and discusses how it could help direct ethical design in practice. It also underlines the importance of conducting additional research with the intention of testing and refining the model under real-world conditions.

Keywords

AI Ethics, Fintech, Ethical Framework, Human Oversight, Transparency, Fairness

Downloads

References

1. Agarwal, V. (2024). Fair or Flawed? Assessing AI’s Impact on Credit Decisions. International Journal of Computer Trends and Technology, 72(Dec 12, 2024), 128–132. https://doi.org/10.14445/22312803/IJCTT-V72I12P115 [Google Scholar] [Crossref]

2. Ahmad, S. F., Han, H., Alam, M. M., Rehmat, Mohd. K., Irshad, M., Arraño-Muñoz, M., & Ariza-Montes, A. (2023). Impact of Artificial Intelligence on Human Loss in Decision making, Laziness and Safety in Education. Humanities and Social Sciences Communications, 10(1), 1–14. https://doi.org/10.1057/s41599-023-01787-8 [Google Scholar] [Crossref]

3. Aldboush, H. H. H., & Ferdous, M. (2023). Building Trust in Fintech: An Analysis of Ethical and Privacy Considerations in the Intersection of Big Data, AI, and Customer Trust. International Journal of Financial Studies, 11(3). https://doi.org/10.3390/ijfs11030090 [Google Scholar] [Crossref]

4. Amnas, M. B., Selvam, M., & Parayitam, S. (2024). FinTech and Financial Inclusion: Exploring the Mediating Role of Digital Financial Literacy and the Moderating Influence of Perceived Regulatory Support. Journal of Risk and Financial Management, 17(3), 108. https://doi.org/10.3390/jrfm17030108 [Google Scholar] [Crossref]

5. Anshari, M., Hamdan, M., Ahmad, N., Ali, E., & Haidi, H. (2022). COVID-19, Artificial intelligence, Ethical Challenges and Policy Implications. AI & Society, 38(2). https://doi.org/10.1007/s00146-022-01471-6 [Google Scholar] [Crossref]

6. Bahoo, S., Cucculelli, M., Goga, X., & Mondolo, J. (2024). Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis. Artificial Intelligence in Finance: A Comprehensive Review through Bibliometric and Content Analysis, 4(2). https://doi.org/10.1007/s43546-023-00618-x [Google Scholar] [Crossref]

7. Barrow, J. M., & Khandhar, P. B. (2023, August 8). Deontology. National Library of Medicine; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK459296/ [Google Scholar] [Crossref]

8. BBC. (2019, November 11). Apple’s “sexist” credit card probed by regulator. BBC News. https://www.bbc.com/news/business-50365609 [Google Scholar] [Crossref]

9. Bleher, H., & Braun, M. (2023). Reflections on Putting AI Ethics into Practice: How Three AI Ethics Approaches Conceptualize Theory and Practice. Science and Engineering Ethics, 29(3). https://doi.org/10.1007/s11948-023-00443-3 [Google Scholar] [Crossref]

10. Boreiko, D., & Massarotti, F. (2020). How Risk Profiles of Investors Affect Robo-Advised Portfolios. Frontiers in Artificial Intelligence, 3. https://doi.org/10.3389/frai.2020.00060 [Google Scholar] [Crossref]

11. Buolamwini, J., & Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. Proceedings of Machine Learning Research, 81(1), 1–15. https://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf [Google Scholar] [Crossref]

12. Card, D., & Smith, N. A. (2020). On Consequentialism and Fairness. Frontiers in Artificial Intelligence, 3(1), 1–11. https://doi.org/10.3389/frai.2020.00034 [Google Scholar] [Crossref]

13. Černevičienė, J., & Kabašinskas, A. (2024). Explainable artificial intelligence (XAI) in finance: a systematic literature review. Artificial Intelligence Review, 57(8). https://doi.org/10.1007/s10462-024-10854-8 [Google Scholar] [Crossref]

14. Chaddha, R., & Agrawal, G. K. (2023). Ethics and morality. Indian Journal of Orthopaedics, 57(11), 1707–1713. https://doi.org/10.1007/s43465-023-01004-3 [Google Scholar] [Crossref]

15. Cheong, B. C. (2024). Transparency and accountability in AI systems: safeguarding wellbeing in the age of algorithmic decision-making. Frontiers in Human Dynamics, 6. https://doi.org/10.3389/fhumd.2024.1421273 [Google Scholar] [Crossref]

16. Cristina, A., Gomes, M., & Rigobon, R. (2023). Algorithmic discrimination in the credit domain: what do we know about it? AI & Society, 39, 2059–2098. https://doi.org/10.1007/s00146-023-01676-3 [Google Scholar] [Crossref]

17. D’Alessandro, W. (2024). Deontology and safe artificial intelligence. Philosophical Studies. https://doi.org/10.1007/s11098-024-02174-y [Google Scholar] [Crossref]

18. de Castro Vieira, J. R., Barboza, F., Cajueiro, D., & Kimura, H. (2025). Towards Fair AI: Mitigating Bias in Credit Decisions—A Systematic Literature Review. Journal of Risk and Financial Management, 18(5), 228. https://doi.org/10.3390/jrfm18050228 [Google Scholar] [Crossref]

19. Dempsey, R. P., Eskander, E. E., & Dubljević, V. (2023). Ethical decision-making in law enforcement: A scoping review. Psych, 5(2), 576–601. https://doi.org/10.3390/psych5020037 [Google Scholar] [Crossref]

20. Ebrahimi, S., Abdelhalim, E., Hassanein, K., & Head, M. (2024). Reducing the incidence of biased algorithmic decisions through feature importance transparency: an empirical study. European Journal of Information Systems, 34(4), 636–664. https://doi.org/10.1080/0960085x.2024.2395531 [Google Scholar] [Crossref]

21. Farisco, M., Evers, K., & Salles, A. (2020). Towards Establishing Criteria for the Ethical Analysis of Artificial Intelligence. Science and Engineering Ethics, 26(5), 2413–2425. https://doi.org/10.1007/s11948-020-00238-w [Google Scholar] [Crossref]

22. Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in society. Harvard Data Science Review, 1(1). https://doi.org/10.1162/99608f92.8cd550d1 [Google Scholar] [Crossref]

23. Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., Madelin, R., Pagallo, U., Rossi, F., Schafer, B., Valcke, P., & Vayena, E. (2018). AI4People—An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. Minds and Machines, 28(4), 689–707. https://doi.org/10.1007/s11023-018-9482-5 [Google Scholar] [Crossref]

24. Fuster, A., Goldsmith-Pinkham, P., Ramadorai, T., & Walther, A. (2021). Predictably Unequal? The Effects of Machine Learning on Credit Markets. The Journal of Finance, 77(1), 5–47. https://doi.org/10.1111/jofi.13090 [Google Scholar] [Crossref]

25. Giarmoleo, F. V., Ferrero, I., Rocchi, M., & Pellegrini, M. (2024). What ethics can say on artificial intelligence: Insights from a systematic literature review. Business and Society Review, 129(2), 258–292. https://doi.org/10.1111/basr.12336 [Google Scholar] [Crossref]

26. Gladstone, J., & Hundtofte, C. S. (2023). A lack of financial planning predicts increased mortality risk: Evidence from cohort studies in the United Kingdom and United States. PLoS ONE, 18(9). https://doi.org/10.1371/journal.pone.0290506 [Google Scholar] [Crossref]

27. Gorry, A., & Leganza, J. M. (2024). How do life events affect retirement timing? Evidence from expectations data. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4815140 [Google Scholar] [Crossref]

28. Griffin, T. A., Green, B. P., & Welie, J. V. M. (2024). The ethical wisdom of AI developers. AI and Ethics, 5, 1087–1097. https://doi.org/10.1007/s43681-024-00458-x [Google Scholar] [Crossref]

29. Hagendorff, T. (2022). A Virtue-Based Framework to Support Putting AI Ethics into Practice. Philosophy & Technology, 35(3). https://doi.org/10.1007/s13347-022-00553-z [Google Scholar] [Crossref]

30. Hanna, M., Pantanowitz, L., Jackson, B., Palmer, O., Visweswaran, S., Pantanowitz, J., Deebajah, M., & Rashidi, H. (2024). Ethical and Bias Considerations in Artificial intelligence/machine Learning. Modern Pathology, 38(3), 1–13. ScienceDirect. https://doi.org/10.1016/j.modpat.2024.100686 [Google Scholar] [Crossref]

31. Heidari, H., Loi, M., Gummadi, K. P., & Krause, A. (2019). A Moral Framework for Understanding Fair ML through Economic Models of Equality of Opportunity. Proceedings of the Conference on Fairness, Accountability, and Transparency, 181–190. https://doi.org/10.1145/3287560.3287584 [Google Scholar] [Crossref]

32. Hermosilla, P., Díaz, M., Berríos, S., & Allende-Cid, H. (2025). Use of Explainable Artificial Intelligence for Analyzing and Explaining Intrusion Detection Systems. Computers, 14(5). https://doi.org/10.3390/computers14050160 [Google Scholar] [Crossref]

33. Jedličková, A. (2024). Ethical approaches in designing autonomous and intelligent systems: a comprehensive survey towards responsible development. AI & Society, 40, 2703–2716. https://doi.org/10.1007/s00146-024-02040-9 [Google Scholar] [Crossref]

34. Jia, T., Wang, C., Tian, Z., Wang, B., & Tian, F. (2022). Design of Digital and Intelligent Financial Decision Support System Based on Artificial Intelligence. Computational Intelligence and Neuroscience, 2022, 1–7. https://doi.org/10.1155/2022/1962937 [Google Scholar] [Crossref]

35. Jobin, A., Ienca, M., & Vayena, E. (2019). The Global Landscape of AI Ethics Guidelines. Nature Machine Intelligence, 1(9), 389–399. https://doi.org/10.1038/s42256-019-0088-2 [Google Scholar] [Crossref]

36. Kaas, M. H. L. (2024). The perfect technological storm: artificial intelligence and moral complacency. Ethics and Information Technology, 26(3). https://doi.org/10.1007/s10676-024-09788-0 [Google Scholar] [Crossref]

37. Kazim, E., & Koshiyama, A. S. (2021). A High-level Overview of AI Ethics. Patterns, 2(9), 1–12. https://doi.org/10.1016/j.patter.2021.100314 [Google Scholar] [Crossref]

38. Klingbeil, A., Grützner, C., & Schreck, P. (2024). Trust and Reliance on AI — an Experimental Study on the Extent and Costs of Overreliance on AI. Computers in Human Behavior, 160, 108352. https://doi.org/10.1016/j.chb.2024.108352 [Google Scholar] [Crossref]

39. Kowald, D., Scher, S., Pammer-Schindler, V., Müllner, P., Waxnegger, K., Demelius, L., Fessl, A., Toller, M., Mendoza, G., Šimić, I., Sabol, V., Trügler, A., Veas, E., Kern, R., Nad, T., & Kopeinik, S. (2024). Establishing and evaluating trustworthy AI: overview and research challenges. Frontiers in Big Data, 7. https://doi.org/10.3389/fdata.2024.1467222 [Google Scholar] [Crossref]

40. Lam, J. W. (2016, April 4). Robo-Advisors: A Portfolio Management Perspective. Yale Department of Economics. https://economics.yale.edu/sites/default/files/2023-01/Jonathan_Lam_Senior%20Essay%20Revised.pdf [Google Scholar] [Crossref]

41. Li, C., Wang, H., Jiang, S., & Gu, B. (2024). The Effect of AI-Enabled Credit Scoring on Financial Inclusion: Evidence from an Underserved Population of over One Million. AIS Electronic Library. https://aisel.aisnet.org/misq/vol48/iss4/25/ [Google Scholar] [Crossref]

42. Liu, Z., & Liang, H. (2025). Are credit scores gender-neutral? Evidence of mis-calibration from alternative and traditional borrowing data. Journal of Behavioral and Experimental Finance, 47, 101081. https://doi.org/10.1016/j.jbef.2025.101081 [Google Scholar] [Crossref]

43. Machado, J., Sousa, R., Peixoto, H., & António Abelha. (2024). Ethical Decision-Making in Artificial Intelligence: A Logic Programming Approach. AI, 5(4), 2707–2724. https://doi.org/10.3390/ai5040130 [Google Scholar] [Crossref]

44. Madaan, H. (2025, February 14). XAI: Bringing Transparency And Trust To Algorithmic Decisions. Forbes. https://www.forbes.com/councils/forbestechcouncil/2025/02/14/the-rise-of-explainable-ai-bringing-transparency-and-trust-to-algorithmic-decisions/ [Google Scholar] [Crossref]

45. Maier, T., Menold, J., & McComb, C. (2022). The Relationship Between Performance and Trust in AI in E-Finance. Frontiers in Artificial Intelligence, 5. https://doi.org/10.3389/frai.2022.891529 [Google Scholar] [Crossref]

46. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2019). A Survey on Bias and Fairness in Machine Learning. ArXiv:1908.09635 [Cs]. https://arxiv.org/abs/1908.09635 [Google Scholar] [Crossref]

47. Morley, J., Floridi, L., Kinsey, L., & Elhalal, A. (2021). From what to how: An overview of AI ethics tools, methods and research to translate principles into practices. AI and Society, 36, 59–72. [Google Scholar] [Crossref]

48. Najem, R., Bahnasse, A., Amr, M. F., & Talea, M. (2025). Advanced AI and big data techniques in E-finance: a comprehensive survey. Discover Artificial Intelligence, 5(1). https://doi.org/10.1007/s44163-025-00365-y [Google Scholar] [Crossref]

49. Nallakaruppan, M. K., Chaturvedi, H., Grover, V., Balusamy, B., Jaraut, P., Bahadur, J., Meena, V. P., & Hameed, I. A. (2024). Credit Risk Assessment and Financial Decision Support Using Explainable Artificial Intelligence. Risks, 12(10). https://doi.org/10.3390/risks12100164 [Google Scholar] [Crossref]

50. Nwafor, C. N., Nwafor, O., & Brahma, S. (2024). Enhancing transparency and fairness in automated credit decisions: an explainable novel hybrid machine learning approach. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-75026-8 [Google Scholar] [Crossref]

51. Raji, A. A. H., Alabdoon , A. H. F., & Almagtome, A. (2024). AI in Credit Scoring and Risk Assessment: Enhancing Lending Practices and Financial Inclusion. International Conference on Knowledge Engineering and Communication Systems, 15, 1–7. https://doi.org/10.1109/ickecs61492.2024.10616493 [Google Scholar] [Crossref]

52. Raji, I. D., Smart, A., White, R. N., Mitchell, M., Gebru, T., Hutchinson, B., Smith-Loud, J., Theron, D., & Barnes, P. (2020). Closing the AI Accountability Gap: Defining an End-to-End Framework for Internal Algorithmic Auditing. ArXiv:2001.00973 [Cs]. https://doi.org/10.48550/arXiv.2001.00973 [Google Scholar] [Crossref]

53. Ridzuan, N. N., Masri, M., Anshari, M., Fitriyani, N. L., & Syafrudin, M. (2024). AI in the Financial Sector: The Line between Innovation, Regulation and Ethical Responsibility. Information, 15(8), 432. https://doi.org/10.3390/info15080432 [Google Scholar] [Crossref]

54. Saarela, M., & Podgorelec, V. (2024). Recent Applications of Explainable AI (XAI): A Systematic Literature Review. Applied Sciences, 14(19). https://doi.org/10.3390/app14198884 [Google Scholar] [Crossref]

55. Sahu, M. K. (2024). AI-Based Robo-Advisors: Transforming Wealth Management and Investment Advisory Services. Journal of AI-Assisted Scientific Discovery, 4(1), 379–411. https://www.scienceacadpress.com/index.php/jaasd/article/view/142 [Google Scholar] [Crossref]

56. Salloch, S., & Eriksen, A. (2024). What Are Humans Doing in the Loop? Co-Reasoning and Practical Judgment When Using Machine Learning-Driven Decision Aids. American Journal of Bioethics, 24(9), 1–12. https://doi.org/10.1080/15265161.2024.2353800 [Google Scholar] [Crossref]

57. Santoni de Sio, F., & van den Hoven, J. (2018). Meaningful Human Control over Autonomous Systems: A Philosophical Account. Frontiers in Robotics and AI, 5(15). https://doi.org/10.3389/frobt.2018.00015 [Google Scholar] [Crossref]

58. Spiekermann, S. (2017). IEEE P7000—The First Global Standard Process for Addressing Ethical Concerns in System Design. Proceedings, 1(3), 159. https://doi.org/10.3390/is4si-2017-04084 [Google Scholar] [Crossref]

59. Svetlova, E. (2022). AI ethics and systemic risks in finance. AI and Ethics, 2(4), 713–725. https://doi.org/10.1007/s43681-021-00129-1 [Google Scholar] [Crossref]

60. Szadeczky, T., & Bederna, Z. (2025). Risk, regulation, and governance: evaluating artificial intelligence across diverse application scenarios. Security Journal, 38(1). https://doi.org/10.1057/s41284-025-00495-z [Google Scholar] [Crossref]

61. Tao, R., Su, C.-W., Xiao, Y., Dai, K., & Khalid, F. (2021). Robo advisors, algorithmic trading and investment management: Wonders of fourth industrial revolution in financial markets. Technological Forecasting and Social Change, 163, 120421. https://doi.org/10.1016/j.techfore.2020.120421 [Google Scholar] [Crossref]

62. Thein, H. H., Grosman, A., Sosnovskikh, S., & Klarin, A. (2024). Should we stay or should we exit? Dilemmas faced by multinationals under sanctioned regimes. Journal of World Business, 59(6), 101585. https://doi.org/10.1016/j.jwb.2024.101585 [Google Scholar] [Crossref]

63. Ukanwa, K. (2024). Algorithmic Bias: Social Science Research Integration Through The 3-D Dependable AI Framework. Current Opinion in Psychology, 58, 101836. https://doi.org/10.1016/j.copsyc.2024.101836 [Google Scholar] [Crossref]

64. Vuković, D. B., Dekpo-Adza, S., & Matović, S. (2025). AI integration in financial services: a systematic review of trends and regulatory challenges. Humanities and Social Sciences Communications, 12(1). https://doi.org/10.1057/s41599-025-04850-8 [Google Scholar] [Crossref]

65. Wachter, S., Mittelstadt, B., & Floridi, L. (2017). Why a Right to Explanation of Automated Decision-Making Does Not Exist in the General Data Protection Regulation. International Data Privacy Law, 7(2), 76–99. https://doi.org/10.1093/idpl/ipx005 [Google Scholar] [Crossref]

66. Wachter, S., Mittelstadt, B., & Russell, C. (2018). Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR. Harvard Journal of Law & Technology. https://arxiv.org/abs/1711.00399 [Google Scholar] [Crossref]

67. Walton, P. (2018). Artificial Intelligence and the Limitations of Information. Information, 9(12), 332. https://doi.org/10.3390/info9120332 [Google Scholar] [Crossref]

68. Wang, X., Wu, Y. C., Ji, X., & Fu, H. (2024). Algorithmic discrimination: examining its types and regulatory measures with emphasis on US legal practices. Frontiers in Artificial Intelligence, 7, 1320277. https://doi.org/10.3389/frai.2024.1320277 [Google Scholar] [Crossref]

69. Yordanova, K., & Bertels, N. (2023). Regulating AI: Challenges and the Way Forward Through Regulatory Sandboxes. Law, Governance and Technology Series, 58, 441–456. https://doi.org/10.1007/978-3-031-41264-6_23 [Google Scholar] [Crossref]

70. Zhu, H., Vigren, O., & Söderberg, I.-L. (2024). Implementing artificial intelligence empowered financial advisory services: A literature review and critical research agenda. Journal of Business Research, 174. https://doi.org/10.1016/j.jbusres.2023.114494 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles