A Review on Plant Profile of Artemisia Annua and Its Pharmacological Benefits

Authors

Krishanu Samanta

Pharmacy college Azamgarh, Uttar Pradesh (India)

Article Information

DOI: 10.51244/IJRSI.2025.120800385

Subject Category: Pharmaceutics

Volume/Issue: 12/9 | Page No: 4256-4266

Publication Timeline

Submitted: 2025-09-16

Accepted: 2025-09-22

Published: 2025-10-16

Abstract

The awareness of medicinal plants and its medicinal value must have been accumulated in the lots of centuries but it is our bad luck that proper chemical and pharmacological evaluation of most of these plants have not done till now. Keeping this view details studies on ethno botanical study of Artemisia annua. The plant Artemisia annua which is well-known for its ability to treat malaria. Artemisia annua has been researched for a wide range of biological activities, such as its ability to regulate the immune system, fight cancer, and have metabolic effects. Secondary metabolites such as monoterpenes, sesquiterpenes, and phenolic chemicals, whose biological characteristics have been thoroughly researched. Sesquiterpene lactone artemisinin is mostly found in the leaves of Artemisia annua. The potential value of this chemical and its derivatives as anti malarial medicines has drawn interest. This review will focus on Artemisia annua plant benefits of using medicinal herbs.

Keywords

Artemesia annua, Sesquiterpenes, Coumarins, Antiviral activities, Antibacterial activities, Antifungal activities

Downloads

References

1. Alesaeidi, S., & Sepide , M. (2016). Asystematic review of Anti-malarial Properties,Immunosuppressive properties, Anti inflammatory properties, Anticancer properties of artemesia annua. Electronic Physician, 3150–3155. [Google Scholar] [Crossref]

2. Echeverrigara, S., Zacari, J., & Beltrao, R. (2010). Nematicidal Activity of Monoterpenoids Against the Root-Knot Nematode Meloidogyne incognita. Phytopathology, 199-203. [Google Scholar] [Crossref]

3. Golenser, J., Waknine, J. H., Krugliak, M., Hunt, N. H., & Grau, G. E. (2006). Current perspectives on the mechanism of action of artemisinins. Intenational journal of Parasitology, 1427-1441. [Google Scholar] [Crossref]

4. Shapira, M. Y., Resnick, I. B., Chou, S., Neumann, A. U., Lurain, N. S., Stamminger, T., et al. (2008). Artesunate as a potent antiviral agent in a patient with late drug-resistant cytomegalovirus infection after hematopoietic stem cell transplantation. Clinical Infectioud Diseases: an official publication of the Infectious Diseases Society of America, 1455-1457. [Google Scholar] [Crossref]

5. Taleghani , A., Emami, S. A., & Tayarani-Najaran, Z. (2020). Artemisia: a promising plant for the treatment of cancer. Bioorganic and Medicinal chemistry. [Google Scholar] [Crossref]

6. Abad, M. J., Bedoya, L. M., Luis, A., & Paulina, B. (2012). The artemisia L. Genus: a review of bioactive essential oils. Molecules, 2542-2566. [Google Scholar] [Crossref]

7. Arav-Boger, R., Ran, H., Chuang-Jian, C., Jianyong, L., Woodard, L., Rosenthal, A., et al. (2010). Artemisinin-Derived Dimers Have Greatly Improved Anti-Cytomegalovirus Activity Compared to Artemisinin Monomers. Comparative study. [Google Scholar] [Crossref]

8. Batty, K., Davis, T., Thu, L., Binh, T., Anh, T., & Ilett, k. (1996). Selective high-performance liquid chromatographic determination of artesunate and alpha- and beta-dihydroartemisinin in patients with falciparum malaria. Journal of Chromatography B, Biomedical Applications, 345-350. [Google Scholar] [Crossref]

9. Bhakuni, R., Jain, D., Sharma, R., & Kumar, S. S. (2000). Secondary metabolites of Artemisia Artemisia annua and their biological activity. Current Science, 35-48. [Google Scholar] [Crossref]

10. Bhakuni, R., Jain, D., Sharma, R., & Kumar, S. S. (2000). Secondary metabolites of Artemisia Artemisia annua and their biological activity. Current Science. [Google Scholar] [Crossref]

11. Bhise, N., Agarwal, M., Thakur, N., Akshay, P., Cherian, S., & Lole, K. (2023). Repurposing of artesunate, an antimalarial drug, as a potential inhibitor of hepatitis E virus. Archives of Virology, 147. [Google Scholar] [Crossref]

12. Bilia, A. R., Santomauro, F., Sacco, C., Bergonzi, M. C., & Donato, R. (2014). Essential Oil of Artemisia annua L.: An Extraordinary Component with Numerous Antimicrobial Properties. Evidence- based complementary and alternative medicine:eCAM, 159819. [Google Scholar] [Crossref]

13. Bora, K. S., & Sharma, A. (2011). The genus Artemisia: a comprehensive review. Pharmaceutical Biology, 101-109. [Google Scholar] [Crossref]

14. Cario, E., Brown, D., McKee, M., Lynch-Devaney, K., Gerken, G., & Podolsky, D. K. (2002). Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. The American Journal of Pathology, 165-173. [Google Scholar] [Crossref]

15. Carvalho, I. S., Cavaco, T., & Brodelius, M. (2011). Phenolic composition and antioxidant capacity of six Artemisia species. Industrial Crops and Products, 382-388. [Google Scholar] [Crossref]

16. Castilho, P., & Figueira, S. G. (2013). Artemisia annua L.: Essential oil and acetone extract composition and antioxidant capacity. Industrial Crops and Products, 170-181. [Google Scholar] [Crossref]

17. Cuzzocrea, S., Saadat, F., Paola, R. D., & Mirshafiey, A. (2005). Artemether: a new therapeutic strategy in experimental rheumatoid arthritis. Immunopharmacology and Immunotoxicity, 615-630. [Google Scholar] [Crossref]

18. Duarte, M., Leme, E., Delarmelina, C., Soares, A., Figueira, G., & Sartoratto, A. (2006). Activity of essential oils from Brazilian medicinal plants on Escherichia coli. Journal of Ethnopharmacology, 197-201. [Google Scholar] [Crossref]

19. Efferth, T. (2017). From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Seminars in Cancer biology, 65-83. [Google Scholar] [Crossref]

20. Efferth, T. (2018). Beyond malaria: The inhibition of viruses by artemisinin-type compounds. Biotechnology Advances, 1730-1737. [Google Scholar] [Crossref]

21. Efferth, T., Marschall, M., Xin, W., Shu-Mei, H., Hauber, I., Olbrich, A., et al. (2002). Antiviral activity of artesunate towards wild-type, recombinant, and ganciclovir-resistant human cytomegaloviruses. Journal of Molecular Medicine (Berlin, Germany), 233-242. [Google Scholar] [Crossref]

22. Efferth, T., Romero, M. R., wolf, D. G., Stamminger, T., Marin, J. J., & Marschall, M. (2008). The antiviral activities of artemisinin and artesunate. Clinical Infectious Diseases: an official publication of the Infectious Diseases Society of America, 804-811. [Google Scholar] [Crossref]

23. Efferth, T., Sauerbrey, A., Olbrich, A., Gebhart, E., Rauch, P., Weber, H. O., et al. (2003). Molecular modes of action of artesunate in tumor cell lines. Comparative Study, 382-394. [Google Scholar] [Crossref]

24. F H, Q., Z X, W., P P, C., L, Z., j, G., Kokudo, N., et al. (2013). Traditional Chinese medicine and related active compounds: a review of their role on hepatitis B virus infection. Drug Discoveries and therapies, 212-224. [Google Scholar] [Crossref]

25. Ferreira, J. F., & Gonzalez, J. M. (2009). Analysis of underivatized artemisinin and related sesquiterpene lactones by high-performance liquid chromatography with ultraviolet detection. Phytochemical analysis, 91-97. [Google Scholar] [Crossref]

26. Ferreira, J. F., Luthria, D. L., Sasaki, T., & Heyerick, A. (2010). Flavonoids from Artemisia annua L. as Antioxidants and Their Potential Synergism with Artemisinin against Malaria and Cancer. Molecules, 3135-3170. [Google Scholar] [Crossref]

27. Flobinus, A., Toudon, N., Desbordes, M., Labrosse, B., Simon, F., Mazeron, M.-C., et al. (2014). Stability and antiviral activity against human cytomegalovirus of artemisinin derivatives. the Journal of Antimicrobial Chemotherapy, 34-40. [Google Scholar] [Crossref]

28. Fu, C., Yu, P., Wang, M., & Qiu, F. (2020). Phytochemical analysis and geographic assessment of flavonoids, coumarins and sesquiterpenes in Artemisia annua L. based on HPLC-DAD quantification and LC-ESI-QTOF-MS/MS confirmation. Food Chemistry, 126070. [Google Scholar] [Crossref]

29. Gupta, P. C., Dutta, P. D., Joshi, P., & Lohar, D. (2009). In vitro antibacterial activity of Artemisia annua Linn. growing in India. International Journal of Green Pharmacy. [Google Scholar] [Crossref]

30. H A, S., S, A.-S., K A, A.-R., & A A, D. (2009). Comparative in vitro effect of artemether and albendazole on adult Toxocara canis. Comparative study, 967-976. [Google Scholar] [Crossref]

31. Han, J., Ye, M., Qiao, X., Xu, M., Wang, B.-R., & Guo, D.-A. (2008). Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry. Journal of Pharmaceutical and Biomedical analysis, 516-525. [Google Scholar] [Crossref]

32. Ho, W. E., Peh, H. Y., Chan, K. T., & Wong, W. F. (2014). Artemisinins: pharmacological actions beyond anti-malarial. Pharmacology and therapeutics, 126-139. [Google Scholar] [Crossref]

33. Hsu, E. (2006). Reflections on the ‘discovery’ of the antimalarial qinghao. British Journal of clinical Pharmacology, 666-670. [Google Scholar] [Crossref]

34. Huahong, W., Chenfei, M., Lanqing, M., Zhigao, D., Hong, W., Hechun, Y., et al. (2009). Secondary metabolic profiling and artemisinin biosynthesis of two genotypes of Artemisia annua. Comparaive Study, 1625-1633. [Google Scholar] [Crossref]

35. Hutter, C., Niemann, I., Milbrdt, J., Frohlich, T., Reiter, C., Kadioglu, O., et al. (2015). The broad-spectrum antiinfective drug artesunate interferes with the canonical nuclear factor kappa B (NF-κB) pathway by targeting RelA/p65. Antiviral Research, 101-109. [Google Scholar] [Crossref]

36. Iqbal, S., Younas, U., Kim Wei, C., Zia-Ul-Haq, M., & Ismail, M. (2012). Chemical Composition of Artemisia annua L. Leaves and Antioxidant Potential of Extracts as a Function of Extraction Solvents. Molecules, 6020-6032. [Google Scholar] [Crossref]

37. Janackovic, P., Rajcevic, N., Gavrilovic, M., Novakovic, J., Giweli, A., Stesevic, D., et al. (2019). Essential oil composition of five Artemisia (Compositae) species in regards to chemophenetics. Biochemical Systematics and Ecology, 103960. [Google Scholar] [Crossref]

38. Juteau, F., Masotti, V., Bessiere, J. M., Dherbomez, M., & Viano, J. (2002). Antibacterial and antioxidant activities of Artemisia annua essential oil. Fitoterapia, 532-535. [Google Scholar] [Crossref]

39. J-X, W., W, T., R, Z., J, W., L-P, S., Y, Z., et al. (2008). The new water-soluble artemisinin derivative SM905 ameliorates collagen-induced arthritis by suppression of inflammatory and Th17 responses. British Journal of Pharmacology, 1303-1310. [Google Scholar] [Crossref]

40. Kawai, T., & Akira, S. (2009). The roles of TLRs, RLRs and NLRs in pathogen recognition. International Immunology, 317-337. [Google Scholar] [Crossref]

41. Kim, M. H., Seo, J. Y., Liu, K. H., & Kim, J.-S. (2014). Protective effect of Artemisia annua L. extract against galactose-induced oxidative stress in mice. PLoS One, 9. [Google Scholar] [Crossref]

42. Lai, J.-P., Lim, Y., Su, J., Shen, H.-M., & Ong, C. N. (2007). Identification and characterization of major flavonoids and caffeoylquinic acids in three Compositae plants by LC/DAD-APCI/MS. Journal of chromatography. B, analytical technologies in the biomedical and life sciences, 215-225. [Google Scholar] [Crossref]

43. Lang, S. J., Schmiech, M., Hafner, S., Paetz, C., Steinborn, C., Huber, R., et al. (2019). Antitumor activity of an Artemisia annua herbal preparation and identification of active ingredients. Phytomedicine: international journal of phytotherapy and phytopharmacology, 152962. [Google Scholar] [Crossref]

44. Li, K.-M., Dong, X., Ma, Y.-N., Wu, Z.-H., Yan, Y.-M., & Cheng, Y.-X. (2019). Antifungal coumarins and lignans from Artemisia annua. Fitoterapia, 323-328. [Google Scholar] [Crossref]

45. Li, Y., Wu, J. M., Shan, F., Wu, G. S., Ding, J., Xiao, D., et al. (2003). Synthesis and cytotoxicity of dihydroartemisinin ethers containing cyanoarylmethyl group. Bioorganic & Medicinal chemistry, 977-984. [Google Scholar] [Crossref]

46. Loo, C. S., Lam, N. K., Yu, D., Su, X.-Z., & Lu, F. (2016). Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacological Research, 192-217. [Google Scholar] [Crossref]

47. Lubbe, A., Seibert, I., Klimkait, T., & Kooy, F. V. (2012). Ethnopharmacology in overdrive: the remarkable anti-HIV activity of Artemisia annua. JOURNAL OF ETHNOPHARMACOLOGY, 854-859. [Google Scholar] [Crossref]

48. M.R, V.-r. (2009). Chemical Composition and Antimicrobial Activity of the Essential Oil of Artemisia annua L. from Iran. Pharmacognosy Research, 21-24. [Google Scholar] [Crossref]

49. Magalhaes, P. D., Pereira, B., & Sartoratto, A. (2004). Yields of Antimalarial Artemisia annua L. Species. Acta Horticulturae, 421-424. [Google Scholar] [Crossref]

50. Massiha, A., Khoshkholgh-Pahlaviani, M. M., Issazadeh, K., Bidarigh, S., & Zarrabi, S. (2012). Antibacterial Activity of Essential Oils and Plant Extracts of Artemisia (Artemisia annua L.) In Vitro. Zahedan Journal Of Research In Medical Sciences, 14-18. [Google Scholar] [Crossref]

51. Messaili, S., Colas, C., Fougere, L., & Destandau, E. (2020). Combination of molecular network and centrifugal partition chromatography fractionation for targeting and identifying Artemisia annua L. antioxidant compounds. Journal of Chromatography. [Google Scholar] [Crossref]

52. Milbradt, J., Auerochs, S., Korn, K., & Maeschall, M. (2009). Sensitivity of human herpesvirus 6 and other human herpesviruses to the broad-spectrum antiinfective drug artesunate. Journal of Clinical Virology: the official publication of the Pan American Socoety for Clinical Virology, 24-28. [Google Scholar] [Crossref]

53. Mirshafiey, A., Saadat, F., Attar, M., Paola, R. D., Sedaghat, R., & Cuzzocrea, S. (2006). Design of a new line in treatment of experimental rheumatoid arthritis by artesunate. Immunopharmacology and Immunotoxicity, 397-410. [Google Scholar] [Crossref]

54. Mueller, M., Karhagomba, I., Hirt, H., & Wemekor, E. (2000). The potential of Artemisia annua L. as a locally produced remedy for malaria in the tropics: agricultural, chemical and clinical aspects. Journal of Ethnophrmacology, 487-493. [Google Scholar] [Crossref]

55. Nam, W., Tak, J., Ryu, J.-K., Jung, M., Yook, j.-I., Kim, H.-J., et al. (2007). Effects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells. Head & Neck, 335-340. [Google Scholar] [Crossref]

56. Ooko, E., Saeed, M. E., Kadioglu, O., Sarvi, S., Colak, M., Elmasaoudi, K., et al. (2015). Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine: international journal of phytotherapy and phytopharmacology, 1045-1054. [Google Scholar] [Crossref]

57. Organization, W. H. (2006). Guidelines for The Treatment of Malaria. World Health Organization. [Google Scholar] [Crossref]

58. Qiang, D., Wenbin, S., Defeng, X., Yanmin, M., Li, F., Jin, Z., et al. (2015). Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis. Molecular Carcinogenesis, 831-840. [Google Scholar] [Crossref]

59. Ran, H., Mott, B. T., Rosenthal, A. S., Genna, D. T., Posner, G. H., & Arav-Boger, R. (2011). An artemisinin-derived dimer has highly potent anti-cytomegalovirus (CMV) and anti-cancer activities. ploS One. [Google Scholar] [Crossref]

60. Reiter, C., Frohlich, T., Zeino, M., Marschall, M., Bahsi, H., Leidenberger, M., et al. (2015). New efficient artemisinin derived agents against human leukemia cells, human cytomegalovirus and Plasmodium falciparum: 2nd generation 1,2,4-trioxane-ferrocene hybrids. European Journal of Medicinal Chemistry, 164-172. [Google Scholar] [Crossref]

61. Renyu, L., Ziheng, Z., Lingfeng, C., Yunfang, Z., Peng, Z., Chen, F., et al. (2016). Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Letters, 165-175. [Google Scholar] [Crossref]

62. Soni, R., Shankar, G., Mukhopadhyay, P., & Gupta, V. (2022). A concise review on Artemisia annua L.: A major source of diverse medicinal compounds. Industrial Crops and Production. [Google Scholar] [Crossref]

63. Soyle, E. M., H, Y., Tok, F. M., Soylu, S., Kurt, S., Baysal, O., et al. (2005). Chemical composition and antifungal activity of the essential oil of Artemisia annua L. against foliar and soil-borne fungal pathogens. Journal of Plant Diseases and Protection, 229-239. [Google Scholar] [Crossref]

64. Stojanovic, N. M., Randjelovic, P. J., Mladenovic, M. Z., Illic, I. R., Petrovic, V., Stojiljkovic, N., et al. (2019). Toxic essential oils, part VI: Acute oral toxicity of lemon balm (Melissa officinalis L.) essential oil in BALB/c mice. Food and Chemical toxicology: an international journal published for the British Industrial Biological Research Association, 110794. [Google Scholar] [Crossref]

65. Valles, J., Garcia, S., Hidalgo, O., Martin, J., Pellicer, J., Sanz, M., et al. (2011). Biology, Genome Evolution, Biotechnological Issues and Research Including Applied Perspectives in Artemisia (Asteraceae). Advances in Botanical Research, 349-419. [Google Scholar] [Crossref]

66. Viuda-Martos, M., El-Nasser, A., Gendy, G., Sendra, E., Fernandez-Lopez, J., El Razik, K., et al. (2010). Chemical composition and antioxidant and anti-Listeria activities of essential oils obtained from some Egyptian plants. Journal of Agricultural and Food chemisrty, 9063-9070. [Google Scholar] [Crossref]

67. Wang, D., Cui, L., Chang, X., & Guan, D. (2020). Biosynthesis and characterization of zinc oxide nanoparticles from Artemisia annua and investigate their effect on proliferation,osteogenic differentiation and mineralization in human osteoblast-like MG-63 Cells. Journal of Phytochemistry and Photobiology.B,biology, 202. [Google Scholar] [Crossref]

68. Wang, Y., Chen, J., Zhang, D., Zhang, Y., Wen, Y., Li, L., et al. (2013). Tumoricidal effects of a selenium (Se)-polysaccharide from Ziyang green tea on human osteosarcoma U-2 OS cells. Carbohydrate polymer, 1186-1190. [Google Scholar] [Crossref]

69. Wang, Y., Wang, Y., You, F., & Xue, J. (2020). Novel use for old drugs: The emerging role of artemisinin and its derivatives in fibrosis. Pharmacological research, 104829. [Google Scholar] [Crossref]

70. Wenbo, Y., Feng, W., & Hui, W. (2016). Immunomodulation of artemisinin and its derivatives. Science Bulletin, 1399-1406. [Google Scholar] [Crossref]

71. White, N. (2008). Qinghaosu (artemisinin): the price of success. Science New york, 330-334. [Google Scholar] [Crossref]

72. Willcox, M. (2009). Artemisia species: From traditional medicines to modern antimalarials--and back again. Journal of alternative and complementary medicine, 101-109. [Google Scholar] [Crossref]

73. Winkelman, M. (1989). Ethnobotanical treatments of diabetes in Baja California Norte. Medicinal anthropolgy, 255-268. [Google Scholar] [Crossref]

74. Wojtkowiak-Giera, A., Derda, M., Kosik-Bogacka, D., Kolasa-Wolosiuk, A., Wandurska-Nowak, E., Jagodzinski, P. P., et al. (2019). The modulatory effect of Artemisia annua L. on toll-like receptor expression in Acanthamoeba infected mouse lungs. Experimental Parasitology, 24-29. [Google Scholar] [Crossref]

75. Xueqin, H., Zhijun, X., Fenfen, L., Chunwen, H., Dongyu, Z., Dawei, W., et al. (2014). Dihydroartemisinin inhibits activation of the Toll-like receptor 4 signaling pathway and production of type I interferon in spleen cells from lupus-prone MRL/lpr mice. International Immunopharmacology, 266-272. [Google Scholar] [Crossref]

76. Yan, L., H.-B, H., X.-D, Z., & J.-H., Z. (2011). Composition and Antimicrobial Activity of Essential Oil from the Aerial Part of Artemisia annua. Journal of Medicinal Plants Research, 3629-3633. [Google Scholar] [Crossref]

77. Yanmei, L., Shaogui, W., Ying, W., Chun, Z., Guangxing, C., Weixing, S., et al. (2013). Inhibitory effect of the antimalarial agent artesunate on collagen-induced arthritis in rats through nuclear factor kappa B and mitogen-activated protein kinase signaling pathway. Translational research: the journal of laboratory and clinical medicine, 89-98. [Google Scholar] [Crossref]

78. Young-Sa, C., & Eun-Rhan, W. (2003). Korean medicinal plants inhibiting to human immunodeficiency virus type 1 (HIV-1) fusion. Phytotherapy research:PTR, 426-429. [Google Scholar] [Crossref]

79. Yu-Jie, L., Yan, G., Qing, Y., Xiao-Gang , W., Lan, Y., Ya-Jie, W., et al. (2015). Flavonoids casticin and chrysosplenol D from Artemisia annua L. inhibit inflammation in vitro and in vivo. Toxicology and Applied Pharmacology, 151-158. [Google Scholar] [Crossref]

80. Yun-Jeong, K., Jin-Ok , J., Min-Kyoung, C., Hak-Sun , Y., Mee Sun, O., & Hee-Jae, C. (2011). Trichinella spiralis infection induces angiogenic factor thymosin β4 expression. Veterinary parasitology, 222-228. [Google Scholar] [Crossref]

81. Zeljkovic, S. C., Maksimovic, M., Vidic, D., & Paric, A. (2012). Chemical Composition, Antioxidant, and Antimicrobial Activities of the Essential Oils From Аrtemisia annua L. Growing Wild in Tajikistan. Industrial crops and Products, 479-485. [Google Scholar] [Crossref]

82. Zhai, D.-D., Supaibulwatana, K., & Zhong, J.-J. (2010). Inhibition of tumor cell proliferation and induction of apoptosis in human lung carcinoma 95-D cells by a new sesquiterpene from hairy root cultures of Artemisia annua. Phytomedicine: international journal of phytotherapy and phytopharmacology, 856-861. [Google Scholar] [Crossref]

83. Zhao, Y.-W., Ni, F.-y., Song, Y.-l., Wang, S.-y., Huang, W.-z., wang, Z.-z., et al. (2014). Chemical constituents from Artemisia annua. zhongguo zhong Yao Za Zhi = Zhongguonzhongyaozazhi = China Journal of Chinese materia medica, 4816-4821. [Google Scholar] [Crossref]

84. Zoair, M. (2014). ANTI-DIABETIC EFFECT OF ARTEMISIA ANNUA (KAYSOM) IN ALLOXAN-INDUCED DIABETIC RATS. The Egyptian Journal of Hospital Medicine, 422-430. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles