“Next-Generation Cybersecurity Through Blockchain and AI Synergy: A Paradigm Shift in Intelligent Threat Mitigation and Decentralised Security”
Authors
MS in Business Analytics, Trine University, USA, MSc. in Digital Business Management (2022), University of Portsmouth (UK)
Article Information
DOI: 10.51244/IJRSI.2025.120800051
Subject Category: Cybersecurity
Volume/Issue: 12/8 | Page No: 614-648
Publication Timeline
Submitted: 2025-07-26
Accepted: 2025-08-01
Published: 2025-09-03
Abstract
The accelerating digitisation of modern enterprises and infrastructures has amplified cybersecurity risks, exposing critical systems to increasingly intelligent and multi-vector attacks. Traditional, rule-based security mechanisms, while historically effective, are proving inadequate in the face of evolving threats such as zero-day exploits, advanced persistent threats (APTs), insider intrusions, and ransomware. To address these challenges, this study proposes a next-generation cybersecurity framework that synergistically integrates Artificial Intelligence (AI) and Blockchain technologies to create a resilient, intelligent, and decentralised security ecosystem.
The research adopts a mixed-method design encompassing system architecture modelling, smart contract development, AI model training, and simulation-based evaluation. The proposed multi-layered architecture comprises four components: (1) a Blockchain-based data layer for immutable logging and distributed trust; (2) an AI-driven intelligence layer leveraging models such as Random Forest, XGBoost, LSTM, and Autoencoders for real-time threat detection and anomaly analysis; (3) a consensus layer to validate events and enforce decentralized governance; and (4) an interface layer providing dashboard access and policy control.
Experimental implementation using Hyperledger Fabric and TensorFlow demonstrated superior performance in detection accuracy, response time, resilience against adversarial attacks, and scalability, compared to traditional AI-only or Blockchain-only models. Furthermore, the integrated system significantly reduced false-positive rates while enabling tamper-proof audit trails and automated incident response through smart contracts. Case applications across critical infrastructure, financial services, healthcare, and government systems illustrate its transformative potential.
This research contributes a novel architectural paradigm that addresses current limitations in cybersecurity by leveraging AI’s predictive analytics with Blockchain’s decentralised integrity. The findings advocate for a paradigm shift toward intelligent, self-healing, and trustless cybersecurity solutions suitable for the demands of next-generation digital ecosystems.
Keywords
Cybersecurity; Artificial Intelligence; Blockchain; Smart Contracts; Anomaly Detection; Decentralized Identity; Secure Architecture; Machine Learning; Zero Trust; Intrusion Detection Systems (IDS).
Downloads
References
1. Ali, W., Naeem, H., Ghani, A., & Awan, I. (2020). A hybrid approach for cyber-attack detection using deep learning and blockchain. Journal of Network and Computer Applications, 168, 102762. https://doi.org/10.1016/j.jnca.2020.102762 [Google Scholar] [Crossref]
2. Buczak, A. L., & Guven, E. (2016). A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Communications Surveys & Tutorials, 18(2), 1153–1176. https://doi.org/10.1109/COMST.2015.2494502 [Google Scholar] [Crossref]
3. Chen, L. K., Jordan, S., Liu, Y. K., Moody, D., Peralta, R., Perlner, R., ... & Dang, Q. (2016). Report on post-quantum cryptography (NISTIR 8105). National Institute of Standards and Technology. https://doi.org/10.6028/NIST.IR.8105 [Google Scholar] [Crossref]
4. Conti, M., Dehghantanha, A., Franke, K., & Watson, S. (2018). Internet of Things security and forensics: Challenges and opportunities. Future Generation Computer Systems, 78, 544–546. https://doi.org/10.1016/j.future.2017.07.060 [Google Scholar] [Crossref]
5. Faruk, M. I., Plabon, F. W., Saha, U. S., & Hossain, M. D. (2025). AI-driven project risk management: Leveraging artificial intelligence to predict, mitigate, and manage project risks in critical infrastructure and national security projects. Journal of Computer Science and Technology Studies, 7(6), 123–137. [Google Scholar] [Crossref]
6. Hossain, M. D., Faruk, M. I., Plabon, F. W., & Jyoti, J. S. (2025). Sustainable supply chain project management: Strategies for reducing carbon footprints. Journal of Business and Management Studies, 7(2), 78–90. [Google Scholar] [Crossref]
7. Islam, S. M. R., Hossain, M. D., Faruk, M. I., Plabon, F. W., Saha, U. S., & Albi, M. A. I. (2025). A systematic review of sustainable engineering management for advancing energy access under SDG 7. Journal of Computer Science and Technology Studies, 7(6), 138–157. [Google Scholar] [Crossref]
8. Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019). Survey of intrusion detection systems: Techniques, datasets and challenges. Cybersecurity, 2(1), 20. https://doi.org/10.1186/s42400-019-0038-7 [Google Scholar] [Crossref]
9. Li, X., Jiang, P., Chen, T., Luo, X., & Wen, Q. (2021). A survey on the security of blockchain systems. Future Generation Computer Systems, 107, 841–853. https://doi.org/10.1016/j.future.2017.08.020 [Google Scholar] [Crossref]
10. Liang, B., Zheng, Z., & Wang, J. (2022). AI-enabled blockchain architecture for smart cybersecurity defense. Future Generation Computer Systems, 132, 215–230. https://doi.org/10.1016/j.future.2022.02.006 [Google Scholar] [Crossref]
11. Nguyen, N. G., Nguyen, T. T., Nguyen, T. D., & Van Nguyen, H. (2022). AI-enhanced cybersecurity: Emerging applications and research challenges. Information Sciences, 596, 117–137. https://doi.org/10.1016/j.ins.2022.04.042 [Google Scholar] [Crossref]
12. Patel, A., Taghavi, M., Bakhtiyari, K., & Jelonek, I. (2013). An intrusion detection and prevention system in cloud computing: A systematic review. Journal of Network and Computer Applications, 36(1), 25–41. https://doi.org/10.1016/j.jnca.2012.08.007 [Google Scholar] [Crossref]
13. Rose, S., Borchert, O., Mitchell, S., & Connelly, S. (2020). Zero trust architecture (Special Publication 800-207). National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-207 [Google Scholar] [Crossref]
14. Sahu, R., Prasad, R. V., & Sharma, S. (2020). Limitations of traditional cybersecurity systems and the emergence of AI-based approaches. Procedia Computer Science, 171, 770–777. https://doi.org/10.1016/j.procs.2020.04.082 [Google Scholar] [Crossref]
15. Santos, J., Filgueira, R., & López, G. (2021). A deep learning approach for user behavior analytics in cybersecurity. Journal of Network and Computer Applications, 174, 102906. https://doi.org/10.1016/j.jnca.2020.102906 [Google Scholar] [Crossref]
16. Sharif, M. I., Li, J., & Rehman, M. U. (2021). Blockchain meets AI: Integrating blockchain and artificial intelligence for secure and scalable industrial applications. Information Fusion, 67, 354–367. https://doi.org/10.1016/j.inffus.2020.10.001 [Google Scholar] [Crossref]
17. Sommer, R., & Paxson, V. (2010). Outside the closed world: On using machine learning for network intrusion detection. In 2010 IEEE Symposium on Security and Privacy (pp. 305–316). IEEE. https://doi.org/10.1109/SP.2010.25 [Google Scholar] [Crossref]
18. Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2019). Evaluating deep learning approaches to characterize and classify network traffic. Journal of Supercomputing, 75, 207–235. https://doi.org/10.1007/s11227-018-2465-2 [Google Scholar] [Crossref]
19. Wang, W., Zhu, M., Zeng, X., Ye, X., & Sheng, Y. (2021). Malware traffic classification using convolutional neural network for representation learning. International Journal of Information Security, 20(2), 177–191. https://doi.org/10.1007/s10207-020-00513-w [Google Scholar] [Crossref]
20. Xu, R., Li, Q., & Li, W. (2021). Secure and decentralized access control using smart contracts and blockchain. IEEE Access, 9, 28214–28226. https://doi.org/10.1109/ACCESS.2021.3058773 [Google Scholar] [Crossref]
21. Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2018). An overview of blockchain technology: Architecture, consensus, and future trends. In 2017 IEEE International Congress on Big Data (pp. 557–564). IEEE. https://doi.org/10.1109/BigDataCongress.2017.85 [Google Scholar] [Crossref]
22. Zyskind, G., Nathan, O., & Pentland, A. (2015). Decentralizing privacy: Using blockchain to protect personal data. In 2015 IEEE Security and Privacy Workshops (pp. 180–184). IEEE. https://doi.org/10.1109/SPW.2015.27 [Google Scholar] [Crossref]