Effects of Thermal Radiation and Ohmic Heating on hydromagnetic Maxwell Hybrid Nanofluid Flow

Authors

Francis Kirwa Korir

Department of Mathematics and Actuarial Science (Kenya)

Article Information

DOI: 10.51584/IJRIAS.2025.10100000183

Subject Category: Mathematics

Volume/Issue: 10/10 | Page No: 2112-2136

Publication Timeline

Submitted: 2025-10-28

Accepted: 2025-11-04

Published: 2025-11-22

Abstract

The constitutive model for the Maxwell fluid is mostly used in the polymeric industry to model the flow of viscoelastic fluids. Since 2005, fluids properties have been enhanced by the emergence of nanofluids and hybrid nanofluids. Studies on Maxwell hybrid nanofluid have been carried out under different conditions, but the effects of both thermal radiation and ohmic heating on the hydromagnetic Maxwell hybrid nanofluid flow has not been investigated. Motivated by this, this study probes into the role that thermal radiation and ohmic heating plays on a 2-D incompressible hydromagnetic flow of Maxwell hybrid nanofluid; a suspension of both Alumina/Copper nanoparticles in a Maxwell fluid. The model of the is formulated then transformed into a non-dimensional system using similarity variables. The shooting technique is employed to convert the dimensionless equations to their equivalent initial value problem; which is then solved using MATLAB bvp4c solver. Parametric analysis shows: Grashof number (1→7) increases velocity 35%, decreases temperature 28%; magnetic parameter (1→7) raises temperature 60%, reduces velocity 71%; nanoparticle fraction (1%→4%) elevates temperature 22%, lowers velocity 18%; radiation parameter enhances heat transfer 31%; Weissenberg number reduces boundary layer 42%.

Keywords

Thermal ,Radiation , Ohmic Heating ,hydromagnetic

Downloads

References

1. Ahmed, F., Reza-E-Rabbi, S., Ali, M. Y., Ali, L. E., Islam, A., Rahman, M. A., ... & Ahmmed, S. F. (2024). Numerical modeling of a MHD non-linear radiative Maxwell nano fluid with activation energy. Heliyon, 10(2). [Google Scholar] [Crossref]

2. Alfvén, H. (1942). Existence of Electromagnetic-Hydrodynamic Waves. Nature, 150(3805):405–406. [Google Scholar] [Crossref]

3. Ali, A., Kanwal, T., Awais, M., Shah, Z., Kumam, P., and Thounthong, P. (2021). Impact of thermal radiation and non-uniform heat flux on MHD hybrid nanofluid along a stretching cylinder. Scientific Reports, 11(1). [Google Scholar] [Crossref]

4. Ali, B., Ahammad, N. A., Awan, A. U., Oke, A. S., Tag-ElDin, E. M., Shah, F. A., & Majeed, S. (2022). The dynamics of water-based nanofluid subject to the nanoparticle’s radius with a significant magnetic field: The case of rotating micropolar fluid. Sustainability, 14(17), 10474. [Google Scholar] [Crossref]

5. Allehiany, F. M., Bilal, M., Alfwzan, W. F., Ali, A., and Eldin, S. M. (2023). Numerical solution for the electrically conducting hybrid nanofluid flow between two parallel rotating surfaces subject to thermal radiation. AIP Advances, 13(7). [Google Scholar] [Crossref]

6. Algehyne, E. A., Alamrani, F. M., Khan, A., Khan, K. A., Lone, S. A., & Saeed, A. (2024). On thermal distribution of MHD mixed convective flow of a Casson hybrid nanofluid over an exponentially stretching surface with impact of chemical reaction and ohmic heating. Colloid and Polymer Science, 302(4), 503-516. [Google Scholar] [Crossref]

7. Asghar, A., Lund, L. A., Shah, Z., Vrinceanu, N., Deebani, W., and Shutaywi, M. (2022). Effect of thermal radiation on three-dimensional magnetized rotating flow of a hybrid nanofluid. Nanomaterials, 12(9):1566. [Google Scholar] [Crossref]

8. Choi, U. S. and Eastman, J. (1995). Enhancing Thermal Conductivity of Fluids with Nanoparticles. ASME International Mechanical Congress and Exposition, San Francisco, (12–17). [Google Scholar] [Crossref]

9. Farooq, U., Lu, D., Munir, S., Ramzan, M., Suleman, M., and Hussain, S. (2019). MHD flow of maxwell fluid with nanomaterials due to an exponentially stretching surface. Scientific Reports, 9(1). [Google Scholar] [Crossref]

10. Fatunmbi, E. O., Badru, J. O., & Oke, A. S. (2020). Magneto-Reactive Jeffrey Nanofluid Flow over a Stretching Sheet with Activation Energy, Nonlinear Thermal Radiation and Entropy Analysis. [Google Scholar] [Crossref]

11. Govindarajulu, K., & Subramanyam Reddy, A. (2022). Magnetohydrodynamic pulsatile flow of third grade hybrid nanofluid in a porous channel with Ohmic heating and thermal radiation effects. Physics of Fluids, 34(1). [Google Scholar] [Crossref]

12. Hady, F. M., Ibrahim, F. S., Abdel-Gaied, S. M., and Eid, M. R. (2012). Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet. Nanoscale Research Letters, 7(1). [Google Scholar] [Crossref]

13. Jaafar, A., Waini, I., Jamaludin, A., Nazaar, R., and Pop, I. (2022). Mhd flow and heat transfer of a hybrid nanofluid past a nonlinear surface stretching/shrinking with effects of thermal radiation and suction. Chinese Journal of Physics, 79:13–27. [Google Scholar] [Crossref]

14. Jayaprakash, J., Govindan, V., Santra, S. S., Askar, S. S., Foul, A., Nandi, S., & Hussain, S. M. (2024). Thermal radiation, Soret and Dufour effects on MHD mixed convective Maxwell hybrid nanofluid flow under porous medium: a numerical study. International Journal of Numerical Methods for Heat & Fluid Flow, 34(10), 3924-3952. [Google Scholar] [Crossref]

15. Khan, N., Ali, F., Ahmad, Z., Murtaza, S., Ganie, A. H., Khan, I., & Eldin, S. M. (2023). A time fractional model of a Maxwell nanofluid through a channel flow with applications in grease. Scientific Reports, 13(1), 4428. [Google Scholar] [Crossref]

16. Kigio, J. K., Mutuku, W. N., & Oke, A. S. Analysis of volume fraction and convective heat transfer on MHD Casson nanofluid over a vertical plate, Fluid Mechanics, 7 (2021), 1–8. [Google Scholar] [Crossref]

17. Maxwell, J. C. (1873). A Treatise on Electricity and Magnetism. Nature, 7:478–480. [Google Scholar] [Crossref]

18. Rajesh, V., Srilatha, M., and Chamkha, A. J. (2020). Hydromagnetic effects on hybrid nanofluid (cu–aluminium-water) flow with convective heat transfer due to a stretching sheet. Journal of Nanofluids, 9(4):293–301. [Google Scholar] [Crossref]

19. Sakiadis, B. C. (1961). Boundary-layer behavior on continuous solid surfaces: I. boundary-layer equations for two-dimensional and axisymmetric flow. AIChE Journal, 7(1):26–28. [Google Scholar] [Crossref]

20. SAMUEL, O. A. (2022). Coriolis Effects on Air, Nanofluid and Casson Fluid Flow Over a Surface with Nonuniform Thickness. PhD diss., KENYATTA UNIVERSITY [Google Scholar] [Crossref]

21. Suresh, S., Venkitaraj, K., Selvakumar, P., and Chandrasekar, M. (2011). Synthesis of al2o3–cu/water hybrid nanofluids using two step method and its thermo physical properties. Multidisciplinary Digital, 388(1-3):41–48. [Google Scholar] [Crossref]

22. Vijay, N., & Sharma, K. (2023). Dynamics of stagnation point flow of Maxwell nanofluid with combined heat and mass transfer effects: A numerical investigation. International Communications in Heat and Mass Transfer, 141, 106545. [Google Scholar] [Crossref]

23. Wang, F., Jamshed, W., Ibrahim, R. W., Abdalla, N. S. E., Abd-Elmonem, A., & Hussain, S. M. (2023). Solar radiative and chemical reactive influences on electromagnetic Maxwell nanofluid flow in Buongiorno model. Journal of Magnetism and Magnetic Materials, 576, 170748. [Google Scholar] [Crossref]

24. Zainal, N. A., Nazar, R., Naganthran, K., and Pop, I. (2022). The impact of thermal radiation on maxwell hybrid nanofluids in the stagnation region. Multidisciplinary Digital Publishing Institute. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles