The Study of Custom Methods and Document Estimates for Quantum State Estimation
Authors
Research Scholar at Department of Physics, SKD University, Hanumangarh (India)
Professor, Department of Physics, SKD University, Hanumangarh (India)
Article Information
DOI: 10.51584/IJRIAS.2025.101100013
Subject Category: Physics
Volume/Issue: 10/11 | Page No: 128-136
Publication Timeline
Submitted: 2025-11-18
Accepted: 2025-11-25
Published: 2025-12-03
Abstract
Quantum state estimation is essential for quantum communication and computing. This study applies maximum likelihood estimation, Bayesian inference, and document-based pattern matching. The hybrid framework enhances accuracy, reduces redundancy, and accelerates classification. Two- and three-qubit noisy systems were analyzed for validation. Results showed higher fidelity and lower estimation errors with Bayesian methods. Spin-gap comparisons confirmed statistical reliability and physical relevance of the approach. The framework supports NISQ devices and hybrid quantum-classical platforms. Future work will explore hardware testing, larger qubit arrays, and machine learning integration.
Keywords
Bayesian inference, maximum likelihood
Downloads
References
1. Aaronson, S. (2019). Shadow tomography of quantum states. SIAM Journal on Computing, 49(5), STOC18-368. [Google Scholar] [Crossref]
2. Angelakis, D. G. (2017). Quantum simulations with photons and polaritons. Springer. https://doi.org/10.1007/978-3-319-53475-8 [Google Scholar] [Crossref]
3. Anisimov, P. M., Raterman, G. M., Chiruvelli, A., Plick, W. N., Huver, S. D., Lee, H., & Dowling, J. P. (2010). Quantum metrology with two-mode squeezed vacuum: Parity detection beats the Heisenberg limit. Physical Review Letters, 104(10), 103602. https://doi.org/10.1103/PhysRevLett.104.103602 [Google Scholar] [Crossref]
4. Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N., Shor, P., Sleator, T., Smolin, J., & Weinfurter, H. (1995). Elementary gates for quantum computation. Physical Review A, 52(5), 3457–3467. https://doi.org/10.1103/PhysRevA.52.3457 [Google Scholar] [Crossref]
5. Bishop, R. F., Li, P. H. Y., Darradi, R., & Richter, J. (2008). Frustrated Heisenberg antiferromagnet on the honeycomb lattice: Spin-gap behaviour and quantum phase transitions. Journal of Physics: Condensed Matter, 20(25), 255251. https://doi.org/10.1088/0953-8984/20/25/255251 [Google Scholar] [Crossref]
6. Blume-Kohout, R. (2010). Optimal, reliable estimation of quantum states. New Journal of Physics, 12(4), 043034. [Google Scholar] [Crossref]
7. Caves, C. M., Fuchs, C. A., & Schack, R. (2002). Unknown quantum states: The quantum de Finetti representation. Journal of Mathematical Physics, 43(9), 4537–4559. [Google Scholar] [Crossref]
8. Chien, C.-Y., Tanaka, A., Yamamoto, T., & Tsujimoto, Y. (2021). Fast learning feedback in quantum neural networks with stabilizer states. Quantum Machine Learning Letters, 2(4), 113–124. https://doi.org/10.1007/s42484-021-00038-6 [Google Scholar] [Crossref]
9. Cramer, M., Plenio, M. B., Flammia, S. T., Somma, R., Gross, D., Bartlett, S. D., ... & Liu, Y. K. (2010). Efficient quantum state tomography. Nature Communications, 1, 149. https://doi.org/10.1038/ncomms1147 [Google Scholar] [Crossref]
10. Ferrie, C., & Blume-Kohout, R. (2014). Estimating the bias of quantum state tomography. Physical Review Letters, 113(20), 200501. [Google Scholar] [Crossref]
11. Figueroa-Romero, L., Kumar, A., & Gupta, R. (2023). Enhanced quantum tomography using hybrid Bayesian algorithms. Quantum Reports, 5(1), 31–45. [Google Scholar] [Crossref]
12. Flammia, S. T., Gross, D., Liu, Y. K., & Eisert, J. (2012). Quantum tomography via compressed sensing: Error bounds, sample complexity, and efficient estimators. New Journal of Physics, 14(9), 095022. https://doi.org/10.1088/1367-2630/14/9/095022 [Google Scholar] [Crossref]
13. Gao, Z., Li, F., Xu, Y., & Yuan, H. (2023). Pattern-based adaptive quantum estimation for noisy intermediate-scale devices. Quantum Reports, 5(1), 57–70. https://doi.org/10.3390/quantum5010006 [Google Scholar] [Crossref]
14. Garcia, A., Tan, M. L., Wong, D., & Kim, M. S. (2023). Adaptive Bayesian learning for quantum state tomography. npj Quantum Information, 9, 56. https://doi.org/10.1038/s41534-023-00706-9 [Google Scholar] [Crossref]
15. Granade, C., Ferrie, C., & Cory, D. G. (2017). Accelerated Bayesian tomography. New Journal of Physics, 19(11), 113017. https://doi.org/10.1088/1367-2630/aa8a3f [Google Scholar] [Crossref]
16. Gross, D., Liu, Y. K., Flammia, S. T., Becker, S., & Eisert, J. (2010). Quantum state tomography via compressed sensing. Physical Review Letters, 105(15), 150401. [Google Scholar] [Crossref]
17. Jędrzejewski, J. (Ed.). (2008). Condensed matter physics in the prime of the 21st century: Phenomena, materials, ideas, methods (43rd Karpacz Winter School of Theoretical Physics, Lądek Zdrój, Poland, 5–11 February 2007). World Scientific. https://doi.org/10.1142/6557 [Google Scholar] [Crossref]
18. Lvovsky, A. I. (2009). Iterative maximum-likelihood reconstruction in quantum homodyne tomography. Journal of Modern Optics, 56(6), 766–772. [Google Scholar] [Crossref]
19. Mahler, D. H., Rozema, L. A., Darabi, A., Ferrie, C., Blume-Kohout, R., & Steinberg, A. M. (2013). Adaptive quantum state tomography improves accuracy quadratically. Physical Review Letters, 111(18), 183601. https://doi.org/10.1103/PhysRevLett.111.183601 [Google Scholar] [Crossref]
20. Nielsen, M. A., & Chuang, I. L. (2000). Quantum computation and quantum information. Cambridge University Press. https://doi.org/10.1017/CBO9780511976667 [Google Scholar] [Crossref]
21. Paris, M. G. A., & Rehacek, J. (Eds.). (2004). Quantum State Estimation. Springer. [Google Scholar] [Crossref]
22. Poilblanc, D., Mambrini, M., & Schwandt, D. (2015). Effective quantum dimer model for the kagome antiferromagnet. Physical Review B, 91(6), 064411. [Google Scholar] [Crossref]
23. Rocchetto, A., Gentile, A., & Eisert, J. (2019). Learning quantum states with generative query models. Quantum, 3, 147. [Google Scholar] [Crossref]
24. Rong, J., Chen, R., Guo, H., & Wang, Y. (2023). Numerical study of spin-liquid behaviour in the honeycomb lattice Heisenberg model. npj Quantum Materials, 8, 20. [Google Scholar] [Crossref]
25. Sachdev, S. (2011). Quantum Phase Transitions (2nd ed.). Cambridge University Press. [Google Scholar] [Crossref]
26. Sarkar, A., Banerjee, D., & Sengupta, S. (2024). Machine-learning-assisted quantum feedback with document templates. Journal of Quantum Engineering, 6(2), 128–139. https://doi.org/10.1002/que2.139 [Google Scholar] [Crossref]
27. Shao, H., Xie, Y., & Wang, J. (2022). Real-time quantum error correction using document patterns. npj Quantum Information, 8(1), 97. https://doi.org/10.1038/s41534-022-00608-4 [Google Scholar] [Crossref]
28. Suess, D., Evans, Z., & Taylor, J. M. (2022). Bayesian inference of quantum dynamics with compressed measurements. Physical Review Research, 4(1), 013073. [Google Scholar] [Crossref]
29. Verresen, R., Moessner, R., & Pollmann, F. (2020). Topology and edge modes in quantum critical chains. Nature Physics, 16, 989–996. [Google Scholar] [Crossref]
30. Wang, L., & Sandvik, A. W. (2018). Critical level crossings and gapless spin liquid in the square-lattice spin-1/2 J1–J2 Heisenberg model. Physical Review Letters, 121(10), 107202. [Google Scholar] [Crossref]
31. Zhang, X., Wang, C., & Meng, Z. Y. (2022). Spin gap and topological order in frustrated antiferromagnets. Physical Review Research, 4(1), 013065. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- A Comparative Study on the Thermal and Electrical Conductivity of Common Materials
- Thickness Dependent Thermoelectric Properties of Pb0.4In0.6Se Thin Films Deposited by Physical Evaporation Technique
- Optimization of a Patch Antenna Using Genetic Algorithm
- Kinematic Constraints On Brown Dwarf Atmospheric Variability And Evidence For Bimodal Formation From Multi-Survey Analysis
- Reservoir Characterization through the Application of Petrophysical Evaluation of Well Logs of Animaux Field, Niger Delta Basin, Nigeria