Quantum Confinement and Trap-State Emission in Cds/Zns Nanoparticles Stabilized within A PVA Matrix

Authors

Karunanidhi M

Department of Chemistry, Government Arts College, Udumalpet, Tamil Nadu (India)

Subhashini S

Arulmigu Palaniandavar Arts College for Women Palani, Tamil Nadu (India)

Venckatesh R

Department of Chemistry, Government Arts College, Udumalpet, Tamil Nadu (India)

Rajeswari Sivaraj

Department of Chemistry, Government Arts College, Udumalpet, Tamil Nadu (India)

Article Information

DOI: 10.51584/IJRIAS.2025.100900028

Subject Category: Chemistry

Volume/Issue: 10/9 | Page No: 294-299

Publication Timeline

Submitted: 2025-09-28

Accepted: 2025-10-03

Published: 2025-10-12

Abstract

CdS/ZnS nanoparticles encapsulated within a polyvinyl alcohol (PVA) matrix were successfully synthesized via a simple solution-phase method and systematically investigated for their structural, optical, and morphological properties. UV–Vis absorption spectra exhibited a strong absorption band in the 200–220 nm region with a noticeable blue shift relative to bulk CdS and ZnS, confirming quantum confinement at the nanoscale. FT-IR analysis validated the presence of characteristic PVA functional groups along with distinct Cd–S and Zn–S stretching vibrations, confirming effective encapsulation of the nanoclusters within the polymer matrix. Photoluminescence spectra revealed broad visible-region emissions attributed to defect-related trap states, with Zn²⁺ incorporation influencing luminescence intensity. XRD analysis confirmed the nanocrystalline cubic zinc blende phase of CdS and ZnS, with crystallite sizes in the 10–20 nm range, while SEM micrographs showed agglomerated yet porous morphologies, offering enhanced surface area. The combined findings highlight the role of PVA in stabilizing CdS/ZnS nanoclusters, leading to nanocomposites with favorable structural and optical features. These results underscore the potential of CdS/ZnS/PVA nanocomposites for future applications in optoelectronic devices, photocatalysis, and electrochemical energy storage systems.

Keywords

CdS/ZnS nanocomposites; Polyvinyl alcohol (PVA); Quantum confinement; Photoluminescence

Downloads

References

1. Sharma, P.; Singh, A.; Kumar, V. Optical and electronic properties of semiconductor nanostructures for optoelectronic applications. J. Mater. Sci. 2021, 56, 10345–10362. https://doi.org/10.1007/s10853-021-05900-5 [Google Scholar] [Crossref]

2. Zhang, L.; Wang, X.; Li, H.; et al. Band alignment and charge transfer dynamics in CdS/ZnS heterostructures. ACS Appl. Nano Mater. 2022, 5, 5678–5687. https://doi.org/10.1021/acsanm.2c00876 [Google Scholar] [Crossref]

3. Wang, Y.; Zhao, T.; Chen, J.; et al. Recent advances in semiconductor nanostructures for optoelectronics. Adv. Funct. Mater. 2023, 33, 2209865. https://doi.org/10.1002/adfm.202209865 [Google Scholar] [Crossref]

4. Singh, R.; Mehta, N.; Arora, A. Surface passivation and stability of CdS/ZnS nanostructures. Mater. Chem. Phys. 2020, 249, 123104. https://doi.org/10.1016/j.matchemphys.2020.123104 [Google Scholar] [Crossref]

5. Li, J.; Xu, K.; Yang, H.; et al. Structural and optical properties of CdS and ZnS nanostructures. J. Alloys Compd. 2021, 857, 158281. https://doi.org/10.1016/j.jallcom.2020.158281 [Google Scholar] [Crossref]

6. Zhao, X.; Liu, Y.; Zhou, D.; et al. Photophysical properties of core–shell CdS/ZnS quantum dots. J. Phys. Chem. C 2022, 126, 20115–20125. https://doi.org/10.1021/acs.jpcc.2c05789 [Google Scholar] [Crossref]

7. Rajendran, S.; Manikandan, E.; Pandiaraj, S. Role of PVA as stabilizing matrix in nanocomposite systems. Polym. Adv. Technol. 2021, 32, 1421–1432. https://doi.org/10.1002/pat.5156 [Google Scholar] [Crossref]

8. Karthikeyan, C.; Balamurugan, S.; Ramesh, R. Optical studies on PVA-stabilized semiconductor nanocomposites. J. Polym. Res. 2022, 29, 245. https://doi.org/10.1007/s10965-022-03017-9 [Google Scholar] [Crossref]

9. Ramesh, S.; Devi, A.; Subramanian, P. Structural stability of CdS/ZnS nanoclusters in polymeric matrices. Colloids Surf. A 2023, 669, 131356. https://doi.org/10.1016/j.colsurfa.2023.131356 [Google Scholar] [Crossref]

10. Chen, H.; Gao, Y.; Liu, J.; et al. Luminescence properties of CdS/ZnS core–shell nanostructures. Appl. Surf. Sci. 2021, 563, 150270. https://doi.org/10.1016/j.apsusc.2021.150270 [Google Scholar] [Crossref]

11. Ghosh, T.; Banerjee, R.; Das, S. Size-dependent optical properties of CdS-based nanostructures. Nanotechnology 2022, 33, 305704. https://doi.org/10.1088/1361-6528/ac6f8e [Google Scholar] [Crossref]

12. Patel, A.; Sharma, M.; Gupta, D. Enhanced electrochemical properties of CdS/ZnS composites. J. Nanopart. Res. 2023, 25, 76. https://doi.org/10.1007/s11051-023-05801-2 [Google Scholar] [Crossref]

13. Liu, X.; Huang, Q.; Zhao, W.; et al. PVA-assisted synthesis of nanocomposites for electrochemical energy storage. Electrochim. Acta 2020, 354, 136707. https://doi.org/10.1016/j.electacta.2020.136707 [Google Scholar] [Crossref]

14. Devi, S.; Narayanan, V.; Kumar, B. PVA-based nanocomposites for high-performance supercapacitors. J. Energy Storage 2024, 75, 110567. https://doi.org/10.1016/j.est.2023.110567 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles