Formulation, Characterization and In-Vitro Evaluation of Curcumin Loaded Liposome for Colon Drug delivery
Authors
M. Pharm., Vedic Institute of Pharmaceutical Education and Research, Sagar, Madhya Pradesh (India)
Professor, Vedic Institute of Pharmaceutical Education and Research, Sagar, Madhya Pradesh (India)
Associate Professor, Vedic Institute of Pharmaceutical Education and Research, Sagar, Madhya Pradesh (India)
Associate Professor, Vedic Institute of Pharmaceutical Education and Research, Sagar, Madhya Pradesh (India)
Professor, Vedic Institute of Pharmaceutical Education and Research, Sagar, Madhya Pradesh (India)
Professor, Vedic Institute of Pharmaceutical Education and Research, Sagar, Madhya Pradesh (India)
Professor, Vedic Institute of Pharmaceutical Education and Research, Sagar, Madhya Pradesh (India)
Article Information
DOI: 10.51584/IJRIAS.2025.10120077
Subject Category: Pharmacy
Volume/Issue: 10/12 | Page No: 917-927
Publication Timeline
Submitted: 2025-12-25
Accepted: 2026-01-10
Published: 2026-01-17
Abstract
Curcumin (CUR) exhibits potent anticancer activity but suffers from poor bioavailability and limited colonspecific delivery. The present study reports the development and characterization of unconjugated liposomes (UL) and hyaluronic acid (HA)-conjugated liposomes (HTL) for colon-targeted delivery of CUR. Liposomes were prepared using the thin-film hydration method and conjugated with HA via carbodiimide-mediated coupling. Physicochemical characterization revealed spherical vesicles with mean diameters of 112.1 ± 1.8 nm (UL) and 132.4 ± 3.4 nm (HTL), low polydispersity indices (<0.3), and a shift in zeta potential towards negative values upon HA conjugation. CUR entrapment efficiency was high due to its lipophilicity, though slightly reduced after conjugation. Liposomes were entrapped in calcium alginate beads and coated with Eudragit S-100 to achieve colon-specific release. Beads exhibited pH-dependent swelling and drug release, with negligible release in gastric and intestinal fluids (pH 1.2–4.5) and sustained release in colonic conditions, enhanced by enzymatic degradation of alginate. Ex-vivo studies using HT-29 cells demonstrated significantly higher cellular uptake of HA-conjugated liposomes via CD44 receptor-mediated endocytosis compared to UL. Cytotoxicity assays confirmed enhanced anticancer efficacy of HA-conjugated liposomes, with CUR-loaded conjugated liposomes showing the lowest IC50 values and greatest reduction in cell viability. Overall, HA conjugation improved liposomal stability, colon-specific drug release, and targeted cytotoxicity, underscoring its potential as an effective nanocarrier system for colorectal cancer therapy.
Keywords
Liposomes, Curcumin (CUR), Eudragit
Downloads
References
1. Arnould, S., Hennebelle, I., Canal, P., Bugat, R., & Guichard, S. (2003). Cellular determinants of oxaliplatin sensitivity in colon cancer cell lines. European Journal of Cancer, 39(1), 112–119. https://doi.org/10.1016/S0959-8049(02)00418-7 [Google Scholar] [Crossref]
2. Bansal, D., Gulbake, A., Tiwari, J., & Jain, S. K. (2016). Development of liposomes entrapped in alginate beads for the treatment of colorectal cancer. International Journal of Biological Macromolecules, 82, 687–695. https://doi.org/10.1016/j.ijbiomac.2015.10.058 [Google Scholar] [Crossref]
3. Cerchiara, T., Abruzzo, A., Parolin, C., Vitali, B., Bigucci, F., Gallucci, M. C., & Luppi, B. (2016). Microparticles based on chitosan/carboxymethylcellulose polyelectrolyte complexes for colon delivery of vancomycin. Carbohydrate Polymers, 143, 124–130. https://doi.org/10.1016/j.carbpol.2016.01.061 [Google Scholar] [Crossref]
4. Chourasia, M. K., & Jain, S. K. (2003). Pharmaceutical approaches to colon targeted drug delivery systems. Journal of Pharmacy & Pharmaceutical Sciences, 6(1), 33–66. [Google Scholar] [Crossref]
5. Rajoriya, V., & Gupta, R. (2025). Folate functionalized nanostructured lipid carriers of paclitaxel for site-specific A549 lung adenocarcinoma targeting. BioNanoScience, 15, 503. https://doi.org/10.1007/s12668-025-02133-9 [Google Scholar] [Crossref]
6. Rajoriya, V., & Gupta, R. (2025). Folate anchored nanostructured lipid carrier for lung A549 adenocarcinoma cell targeting. Journal of Neonatal Surgery, 14(32S), 3272–3280. https://www.jneonatalsurg.com [Google Scholar] [Crossref]
7. Jain, A., Gupta, Y., & Jain, S. K. (2007). Perspectives of biodegradable natural polysaccharides for sitespecific drug delivery to the colon. Journal of Pharmacy & Pharmaceutical Sciences, 10(1), 86–128. [Google Scholar] [Crossref]
8. Rajoriya, V., Gupta, R., Vengurlekar, S., & Jain, S. K. (2025). Folate conjugated nano-lipid construct of paclitaxel for site-specific lung squamous carcinoma targeting. International Journal of Pharmaceutics, 672, 125312. https://doi.org/10.1016/j.ijpharm.2025.125312 [Google Scholar] [Crossref]
9. Dhir, K., Kahlon, H., & Kaur, S. (2013). Recent approaches for colon targeted drug delivery system. International Journal of Pharmaceutical, Chemical and Biological Sciences, 3(2), 360–371. [Google Scholar] [Crossref]
10. Rajoriya, V., Rajoriya, V., Gupta, R., Gupta, S., & Jain, S. K. (2025). Analyzing terpenes role in cancer treatment (pp. 87–106). IGI Global Scientific Publishing. [Google Scholar] [Crossref]
11. Drechsler, M., Garbacz, G., Thomann, R., & Schubert, R. (2014). Development and evaluation of chitosan and chitosan/Kollicoat® Smartseal 30 D film-coated tablets for colon targeting. European [Google Scholar] [Crossref]
12. Journal of Pharmaceutics and Biopharmaceutics, 88(3), 807–815. https://doi.org/10.1016/j.ejpb.2014.07.014 [Google Scholar] [Crossref]
13. Rajoriya, V., Gupta, R., Vengurlekar, S., & Singh, U. S. (2024). Nanostructured lipid carriers (NLCs): A promising candidate for lung cancer targeting. International Journal of Pharmaceutics, 655, 123986. https://doi.org/10.1016/j.ijpharm.2024.123986 [Google Scholar] [Crossref]
14. Gu, W. X., Li, Q. L., Lu, H., Fang, L., Chen, Q., Yang, Y. W., & Gao, H. (2015). Construction of stable polymeric vesicles based on azobenzene and beta-cyclodextrin grafted poly(glycerol methacrylate)s for potential applications in colon-specific drug delivery. Chemical Communications, 51(22), 4715–4718. https://doi.org/10.1039/C5CC00587A [Google Scholar] [Crossref]
15. Rajoriya, V., Thakur, A. S., Sharma, Y., Parashar, R., Chourasiya, S., Patel, K., Yadav, P., & Mishra, A. (2024). Formulation development, optimization and characterization of folate conjugated solid lipid nanoparticle (FC-SLNs) for effective lung cancer targeting. International Journal of Novel Research and Development, 9(7), e180–e187 [Google Scholar] [Crossref]
16. Anitha, A., Deepa, N., Chennazhi, K. P., Lakshmanan, V. K., & Jayakumar, R. (2014). Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochimica et Biophysica Acta (BBA) – General Subjects, 1840(9), 2730–2734. https://doi.org/10.1016/j.bbagen.2014.05.02 [Google Scholar] [Crossref]
17. Tomar, S., Rajoriya, V., Sahu, P., Agarwal, S., Vyas, S. P., &Kashaw, S. K. (2022). Multifunctional nanoparticles for organelle-specific targeted drug delivery in cancer therapy. Current Nanomedicine, 12(3), 191–203. https://doi.org/10.2174/246818731366622121915031 [Google Scholar] [Crossref]
18. Hosseinifar, T., Sheybani, S., Abdouss, M., Hassani Najafabadi, S. A., & Shafiee Ardestani, M. (2018). Pressure responsive nanogel based on alginate-cyclodextrin with enhanced apoptosis mechanism for colon cancer delivery. Journal of Biomedical Materials Research Part A, 106(1), 349–355. https://doi.org/10.1002/jbm.a.36238 [Google Scholar] [Crossref]
19. Rajoriya, V., Kashaw, V., &Kashaw, S. K. (2021). Folate conjugated solid lipid nanoparticle: Formulation development, optimization, and characterization. Current Nanomedicine, 11(3), 186–199. https://doi.org/10.2174/2468187311666211201111858 [Google Scholar] [Crossref]
20. Hua, S., Marks, E., Schneider, J. J., & Keely, S. (2015). Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1117–1133. https://doi.org/10.1016/j.nano.2015.01.00 [Google Scholar] [Crossref]
21. Rathore, S., Rajoriya, V., Kushwaha, V., Jain, S., &Kashaw, S. K. (2021). Preparation and characterization of 5-fluorouracil loaded nanogels for skin cancer treatments: In vitro drug release, cytotoxicity and cellular uptake analysis. Current Nanomedicine, 11(2), 127–138. https://doi.org/10.2174/2468187311666210301112644 [Google Scholar] [Crossref]
22. Kang, X. J., Wang, H. Y., Peng, H. G., Chen, B. F., Zhang, W. Y., Wu, A. H., Xu, Q., & Huang, Y. Z. (2017). Co-delivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacologica Sinica, 38(6), 885–896. https://doi.org/10.1038/aps.2017.20 [Google Scholar] [Crossref]
23. Jian, Y. S., Chen, C. W., Lin, C. A., Yu, H. P., Lin, H. Y., Liao, M. Y., Wu, S. H., Lin, Y. F., & Lai, P. S. (2017). Hyaluronic acid–nimesulide conjugates as anticancer drugs against CD44 overexpressing HT-29 colorectal cancer in vitro and in vivo. International Journal of Nanomedicine, 12, 2315–2329. https://doi.org/10.2147/IJN.S127432 [Google Scholar] [Crossref]
24. Lima, S. A., Gaspar, A., Reis, S., & Durães, L. (2017). Multifunctional nanospheres for co-delivery of methotrexate and mild hyperthermia to colon cancer cells. *Materials Science and Engineering: C, 75 [Google Scholar] [Crossref]
25. Fan, R., Li, X., Deng, J., Gao, X., Zhou, L., Zheng, Y., Tong, A., Zhang, X., You, C., & Guo, G. (2016). Dual drug-loaded biodegradable nanofibrous microsphere for improving anti-colon cancer activity. Scientific Reports, 6(1), 1–13. https://doi.org/10.1038/srep2837 [Google Scholar] [Crossref]
26. Bilthariya, U., Jain, N., Rajoriya, V., & Jain, A. K. (2013). Folate-conjugated albumin nanoparticles for rheumatoid arthritis-targeted delivery of etoricoxib. Drug Development and Industrial Pharmacy, 41(1), 95–104. https://doi.org/10.3109/03639045.2013. 841186 [Google Scholar] [Crossref]
27. Colpan, R. D., & Erdemir, A. (2021). Co-delivery of quercetin and caffeic acid phenethyl ester by polymeric nanoparticles for improved antitumor efficacy in colon cancer cells. Journal of Microencapsulation, 38(6), 381–393. https://doi.org/10.1080/02652048.2021.1938082 [Google Scholar] [Crossref]
28. Mishra, D., Jain, N., Rajoriya, V., & Jain, A. K. (2014). Glycyrrhizin-conjugated chitosan nanoparticles for hepatocyte-targeted delivery of lamivudine. Journal of Pharmacy and Pharmacology, 66(8), 1082– 1093. https://doi.org/10.1111/jphp.12235. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- QbD Approach to Hplc Method Development and Validation of the Simultaneous Estimation of Sulbactum and Durlobactum in Pharmaceutical Dosage Form
- A Review on an Evaluation of a Liposomal Hydrogel for Combined Minoxidil and Tretinoin Delivery in Androgenetic Alopecia
- Qualitative Screening and Analysis of Lunasia amara Blanco (Tawal-ulad) Ethanolic Leaves Extract as Potential Anti-Angiogenic Inhibitors Using the Chorioallantoic Membrane Assay on Mallard Duck Embryo
- A Comprehensive Review on Calotropis Procera on Its Analgesic Activity