Qualitative Screening and Analysis of Lunasia amara Blanco (Tawal-ulad) Ethanolic Leaves Extract as Potential Anti-Angiogenic Inhibitors Using the Chorioallantoic Membrane Assay on Mallard Duck Embryo

Authors

Ivy Jane B. Acebedo

Faculty of the Pharmacy Department St. Alexius College, City of Koronadal (Philippines)

Lhimwel Oronos

Faculty of the Pharmacy Department St. Alexius College, City of Koronadal (Philippines)

Kyzyl Moerae D. Pasicolan

Faculty of the Pharmacy Department St. Alexius College, City of Koronadal (Philippines)

Adams M. Quiape

Faculty of the Pharmacy Department St. Alexius College, City of Koronadal (Philippines)

Article Information

DOI: 10.51584/IJRIAS.2025.1010000013

Subject Category: Pharmacy

Volume/Issue: 10/10 | Page No: 181-192

Publication Timeline

Submitted: 2025-09-17

Accepted: 2025-09-24

Published: 2025-10-28

Abstract

Angiogenesis, the physiological process of forming new blood vessels, is a hallmark of tumor progression and metastasis in various cancers. As resistance to traditional chemotherapy increases, anti-angiogenic therapies have emerged as promising alternatives. This study investigates the anti-angiogenic potential of Lunasia amara Blanco (Tawal-ulad) ethanolic leaf extract using the chorioallantoic membrane (CAM) assay on mallard duck embryos. A quasi-experimental pretest-posttest design with non-equivalent groups was employed to assess the extracts inhibitory effect on vascular development across five treatment groups (1 mg/mL, 3 mg/mL, 5 mg/mL, pure extract) and two controls (positive: 1 mg/mL Celecoxib; negative: untreated). Results indicated that the pure extract yielded the highest average inhibition (68.89%), particularly in tertiary, quaternary, and quinary blood vessels, suggesting a concentration-dependent inhibitory trend. Despite these observable trends, one-way ANOVA and Tukey's post hoc tests revealed no statistically significant differences (p > 0.01) among treatments, indicating the effects may be due to biological variability. Nonetheless, the pronounced inhibitory patterns in higher extract concentrations support the need for further studies. These findings suggest Lunasia amara holds potential as a natural anti-angiogenic agent pending further validation through advanced assays and larger sample sizes.

Keywords

Angiogenesis, Anti-angiogenic, Lunasia amara Blanco, Chorioallantoic Membrane Assay, Celecoxib

Downloads

References

1. Abdallah, Q., Al Deeb, I., Bader, A., Hamam, F., Saleh, K., & Abdulmajid, A. (2018). Anti-angiogenic activity of Middle East medicinal plants of the Lamiaceae family. Molecular Medicine Reports. https:// doi.org/10.3892/mmr.2018.9155 [Google Scholar] [Crossref]

2. Abdelhaleem, E. F., Kassab, A. E., El‐Nassan, H. B., & Khalil, O. M. (2022). Recent advances in the development of celecoxib analogs as anticancer agents: A review. Archiv Der Pharmazie. https:// doi .org/ 10.1002/ardp.202200326 [Google Scholar] [Crossref]

3. Alasvand, M., Assadollahi, V., Ambra, R., Hedayati, E., Kooti, W., & Peluso, I. (2019). Antiangiogenic effect of alkaloids. Oxidative Medicine and Cellular Longevity, 2019, 1–16. https:// doi.org/10.1155/2019/9475908 [Google Scholar] [Crossref]

4. Ali, Z., & Sahib, H. (2022). Antiangiogenic Activity of Sweet Almond (Prunus dulcis) Oil Alone and in Combination with Aspirin in both in vivo and in vitro Assays. Asian Pacific Journal of Cancer Prevention, 23(4), 1405–1413. https://doi.org/10.31557/apjcp.2022.23.4.1405 [Google Scholar] [Crossref]

5. Alinsug, M. V., Estandarte, M. H. G., Somodio, E. M. N., Sabarita, M. J. J., & Deocaris, C. C. (2022). Biodiversity of ethnomedicinal plants from the B’laan Tribe in Mount Matutum Protected Landscape, Southern Mindanao, Philippines. Biodiversitas Journal of Biological Diversity, 23(1). https://doi.org/10.13057/biodiv/d230160 [Google Scholar] [Crossref]

6. Alinsug, Malona & Estandarte, Harold & Somodio, & Sabarita, Mariel & Deocaris, An AZ of Key Concepts; Oxford University Press: Oxford, UK, 247. angiogenesis equations. Journal of Nonlinear Science, 34(2). https://doi.org/10.1007/s00332-023-10006-2 [Google Scholar] [Crossref]

7. Aryani, R., Nugroho, R. A., Manurung, H., Rulimada, M. H., Maytari, E., Siahaan, A., Rudianto, R., & Jati, W. N. (n.d.). Anti-angiogenic activity of Ficus deltoidea L. Jack silver nanoparticles using the chorioallantoic membrane assay. F1000Research, 12,544. https://doi.org/ 10.12688/f1000 researc h.130477.1 [Google Scholar] [Crossref]

8. Bonzo et al. (2022) Development and Scientific Validation of Medicinal, Nutraceutical, And Cosmeceutical Products from Marine and Terrestrial Resources in Mindanao: Towards Community Initiatives and Poverty Alleviation, 2022 [Google Scholar] [Crossref]

9. Bunga, E. V., Farid, N., Hasriadi, H., & Ilyas, I. L. (2024). Investigation of the Role of [Google Scholar] [Crossref]

10. in the Treatment of Malaria Through Network Pharmacology Analysis. Journal of Herbal Medicine, 44, 100857.https://doi.org/10.1016/j.hermed.2024.100857 [Google Scholar] [Crossref]

11. Campbell, S., Greenwood, M., Prior, S., Shearer, T., Walkem, K., Young, S., Bywaters, D., & Walker, K. (2020). Purposive sampling: complex or simple? Research case examples. Journal of Research in Nursing, 25(8), 652–661. https://doi.org/10.1177/1744987120927206 [Google Scholar] [Crossref]

12. CAYMAN CHEMICAL. (2022). Celecoxib [Product information]. https://cdn.caymanchem.com/cdn/ insert/10008672.pdf [Google Scholar] [Crossref]

13. Crozier, A., Clifford, M., & Ashihara, H. (2014). Plant secondary metabolites: occurrence, structure, and role in the human diet. http://ci.nii.ac.jp/ncid/BA79661826 [Google Scholar] [Crossref]

14. Calimag MP,Silbermann M.Current Challenges and Evolving Strategies in Implementing Cancer and Palliative Care Services in the Philippines.British Journal of Cancer Research. 2019: 2:2. [Google Scholar] [Crossref]

15. Dapar & Demayo, 2017 - Dapar, M. L., & Demayo, C. (2030, January 11). Folk Medical uses of Lunas Lunasia Amara Blanco by the Manobo people, traditional healers and residents of Agusan del Sur, Philippines. HERDIN. https://www.herdin.ph/index.php/component/herdin/?view=research&cid=69102#:~:text=The%20bark%20of%20the%20tree,diseases%20and%20stomach%20troubles); [Google Scholar] [Crossref]

16. Do etal. (2014) -Q.D. Do, A.E. Angkawijaya, P.L. Tran- Nguyen, L.H. Huynh, F.E. Soetaredjo, S. Ismadji, Y.H. Ju Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica [Google Scholar] [Crossref]

17. Ean-Jeong Seo (2013) - Seo, E., Kuete, V., Kadioglu, O., Krusche, B., Schröder, S., Greten, H. J., Arend, J., Lee, I., & Efferth, T. (2013). Antiangiogenic Activity and Pharmacogenomics of Medicinal Plants from Traditional Korean Medicine. Evidence-based Complementary and Alternative Medicine, 2013, 1–13. https://doi.org/10.1155/2013/131306 [Google Scholar] [Crossref]

18. Gamallo et al., 2016 - Gamallo, J. P. M., Espere, G., Carillo, D. M. C., Blanes, D. N., Abuda, F. G., Labarda, H. J., Madelo, X. M., & Jumawan, J. C. (2016). Evaluation of antiangiogenic property of Ocimum basilica ethanolic leaf extract by using duck embryo chorioallantoic membrane (cam) assay and its morphometric analysis. International Journal of Herbal Medicine, 22–26 [Google Scholar] [Crossref]

19. Gaziano, R., Moroni, G., Buè, C., Miele, M. T., Sinibaldi-Vallebona, P., & Pica, F. (2016) Antitumor effects of the benzophenanthridine alkaloid sanguinarine: Evidence and perspectives. World Journal of Gastrointestinal Oncology, 8(1), 30. [Google Scholar] [Crossref]

20. Hatami et al. (2022) - Hatami, E., Nagesh, P. K. B., Sikander, M., Dhasmana, A., Chauhan, S. C., Jaggi, M., & Yallapu, M. M. (2022). Tannic acid exhibits antiangiogenesis activity in Nonsmall-Cell lung cancer cells. ACS Omega, 7(27), 23939–23949. https://doi.org/10.1021/acsomega.2c02727 [Google Scholar] [Crossref]

21. Hlophe, Y. N., & Joubert, A. M. (2022). Vascular endothelial growth factor‐C in activating vascular endothelial growth factor receptor‐3 and chemokine receptor‐4 in melanoma adhesion. Journal of Cellular and Molecular Medicine, 26(23), 5743–5754. https://doi.org/10.1111/jcmm.17571 https:// biostats.w.uib.no/post-hoc-tests-tukey-hsd [Google Scholar] [Crossref]

22. Nowak-Sliwinska, P., Alitalo, K., Allen, E., Anisimov, A., Aplin, A. C., Auerbach, R., Augustin, H. G., Bates, D. O., Van Beijnum, J. R., Bender, R. H. F., Bergers, G., Bikfalvi, A., Bischoff, J., Böck, B. C., Brooks, P. C., Bussolino, F., Cakir, B., Carmeliet, P., Castranova, D., . . . Griffioen, A. W. (2018). Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 21(3), 425–532. https://doi.org/10.1007/s10456-018-9613-x [Google Scholar] [Crossref]

23. John_Hunter_and_the_origin_of_the_term_angiogenesis#pf2 is here. Frontiers in Cellular Neuroscience, n/a. https://www.researchgate.net/publication/292949511_ [Google Scholar] [Crossref]

24. Jain, 2001 - Jain, R. K. (2001). Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nature Medicine, 7(9), 987–989. https://doi.org/10.1038/nm0901-987 [Google Scholar] [Crossref]

25. Jainuddin et al., 2023 - Jainuddin, A., Paserangi, H., & Marwah, M. (2023). Karakteristik kayu Sanrego (Lunasia Amara Blanco) sebagai salah satu potensi indikasi geografis di Kabupaten Bone. review-unes.com. https://doi.org/10.31933/unesrev.v6i1.920 [Google Scholar] [Crossref]

26. Kamble, S. S., & Gacche, R. N. (2018). “Evaluation of anti-breast cancer, anti-angiogenic and antioxidant properties of selected medicinal plants.” European Journal of Integrative Medicine, 25, 13–19. https://doi.org/10.1016/j.eujim.2018.11.006 [Google Scholar] [Crossref]

27. Kretschmer et al., 2021- Kretschmer et al., 2021 - Kretschmer, M., Rüdiger, D., & Zahler, S. (2021). Mechanical aspects of angiogenesis. Cancers, 13(19), 4987. https://doi.org/10.3390/cancers13194987 [Google Scholar] [Crossref]

28. Li, Kang, Wang, & Huang, 2018 - Li, T., Kang, G., Wang, T., & Huang, H. (2018). Tumor angiogenesis and anti‑angiogenic gene therapy for cancer (Review). Oncology Letters. https://doi.org/ 10.3892/ ol.2018.8733 [Google Scholar] [Crossref]

29. Leahy, K. M., Ornberg, R. L., Wang, Y., Zweifel, B. S., Koki, A. T., & Masferrer, J. L. (2002). Cyclooxygenase-2 inhibition by celecoxib reduces proliferation and induces apoptosis in angiogenic endothelial cells in vivo. Cancer research, 62(3), 625–631. [Google Scholar] [Crossref]

30. Lenzer, J. (2008). Moses Judah Folkman. BMJ, 336(7638), 282. https://doi.org/10.1136/ bmj.39475. 298762.be [Google Scholar] [Crossref]

31. Lopes-Coelho, F., Martins, F., Pereira, S. A., & Serpa, J. (2021). Anti-Angiogenic therapy: current challenges and future perspectives. International Journal of Molecular Sciences, 22(7), 3765. https:// doi.org/10.3390/ijms22073765 [Google Scholar] [Crossref]

32. Macabeo, A. P. G., & Aguinaldo, A. M. (2008). Chemical and phytomedicinal investigations in Lunasia Amara. Pharmacognosy Reviews/Bioinformatics Trends/Pharmacognosy Review, 2(4), 317. http:// www.phcogrev.com/article/2008/2/4-11 [Google Scholar] [Crossref]

33. Majnooni, M. B., Fakhri, S., Ghanadian, S. M., Bahrami, G., Mansouri, K., Iranpanah, A., Farzaei, M. H., & Mojarrab, M. (2023). Inhibiting angiogenesis by Anti-Cancer saponins: From phytochemistry to cellular signaling pathways. Metabolites, 13(3), 323. https://doi.org/10.3390/metabo13030323 [Google Scholar] [Crossref]

34. Munir et al. (2019) - Munir, K., Elahi, H., Ayub, A., Frezza, F., & Rizzi, A. (2019). Cancer diagnosis Using Deep Learning: A Bibliographic review. Cancers, 11(9), 1235. https:// doi.org/ 10.3390/ cancers 11091235 [Google Scholar] [Crossref]

35. Nerdy, N., Lestari, P., Sinaga, J. P., Ginting, S., Zebua, N. F., Mierza, V., & Bakri, T. K. (2021). Brine Shrimp (Artemia salina Leach.) Lethality Test of Ethanolic Extract from Green Betel (Piper betle Linn.) and Red Betel (Piper crocatum Ruiz and Pav.) through the Soxhletation Method for Cytotoxicity Test. Open Access Macedonian Journal of Medical Sciences, 9(A), 407–412. https://doi.org/10.3889/oamjms.2021.6171 [Google Scholar] [Crossref]

36. Oliinyk, D., Eigenberger, A., Felthaus, O., Haerteis, S., & Prantl, L. (2023). Chorioallantoic membrane assay at the Cross-Roads of Adipose-Tissue-Derived stem cell research. Cells, 12(4), 592. https:// doi.org/ 10.3390/cells12040592One-Way ANOVA. (n.d.). Introduction to Statistics | JMP. [Google Scholar] [Crossref]

37. Peluzzo, A., M., & Autieri, M., V. (2022). Challenging the Paradigm: Anti-Inflammatory Interleukins and Angiogenesis. Challenging the Paradigm: Anti-Inflammatory Interleukins and Angiogenesis. https://doi.org/10.3390/cells11030587 [Google Scholar] [Crossref]

38. Putri, M. D. (2024). Bioactive compounds of Sanrego (Lunasia amara blanco.) extracted using different methods: A review. [Google Scholar] [Crossref]

39. Quimque, M. T. J., Go, A. D., Lim, J. a. K., Vidar, W. S., & Macabeo, A. P. G. (2023). Mycobacterium tuberculosis Inhibitors Based on Arylated Quinoline Carboxylic Acid Backbones with Anti-Mtb Gyrase Activity. International Journal of Molecular Sciences, 24(14), 11632. https://doi.org/ 10.3390/ijms 241411632 [Google Scholar] [Crossref]

40. Raju, N. S. C., & Yi̇Ng, T. S. (2023). Anti-Angiogenesis Screening of Moringa oleifera [Google Scholar] [Crossref]

41. Rao & Suresh, 2013) - Baliga, M. S., Jimmy, R., Thilakchand, K. R., Sunitha, V., Bhat, N. R., Saldanha, E., Rao, S., Rao, P., Arora, R., & Palatty, P. L. (2013). Ocimum SanctumL (Holy basil or tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutrition and Cancer, 65(sup1), 26–35. https://doi.org/10.1080/01635581.2013.785010 [Google Scholar] [Crossref]

42. Rojas & Roa, 2024 - Rojas, V., & Roa, I. (2024). Celecoxib: antiangiogenic and antitumoral action. International Journal of Morphology, 42(1), 40–45. https://doi.org/10.4067/s0717-95022024000100040 [Google Scholar] [Crossref]

43. Rosas et al., 2024 - Rosas, C., Sinning, M., Ferreira, A., Fuenzalida, M., & Lemus, D. (2014). Celecoxib decreases growth and angiogenesis and promotes apoptosis in a tumor cell line resistant to chemotherapy. BiologicalResearch, 47(1). https://doi.org/10.1186/0717-6287-47-27 [Google Scholar] [Crossref]

44. Sahib et al., 2022 - Jalil, Z., & Sahib, H. (2022). Antiangiogenic Activity of Quinine Alone and in Combination with vitamin C in both ex vivo and in vivo Assays. Asian Pacific Journal of Cancer Prevention, 23(12), 4185–4192. https://doi.org/10.31557/apjcp.2022.23.12.4185 [Google Scholar] [Crossref]

45. Shibuya, 2011; Sholley et al., 2019 - Shibuya M. (2011). Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes & cancer, 2(12), 1097–1105. https://doi.org/10.1177/1947601911423031 [Google Scholar] [Crossref]

46. Sirisilla, S. (2023). Experimental Research Design —solutions. https://www.pronetbio.com/ News/ 1733718307072585728.html [Google Scholar] [Crossref]

47. Silveria et al., 2012 - Crozier, A., Clifford, M., & Ashihara, H. (2014). Plant secondary metabolites: occurrence, structure, and role in the human diet. http://ci.nii.ac.jp/ncid/BA7966182 https://doi.org/ 10.9734/bbj/2013/4244 [Google Scholar] [Crossref]

48. Stryker et al., 2019 - Stryker, Z. I., Rajabi, M., Davis, P. J., & Mousa, S. A. (2019). Evaluation of angiogenesis assays. Biomedicines, 7(2), 37. https://doi.org/10.3390/biomedicines7020037 [Google Scholar] [Crossref]

49. Subbaraj et al. (2021) - Subbaraj, G. K., Kumar, Y. S., & Kulanthaivel, L. (2021). Antiangiogenic role of natural flavonoids and their molecular mechanism: an update. The Egyptian Journal of Internal Medicine, 33(1). https://doi.org/10.1186/s43162-021-00056-x [Google Scholar] [Crossref]

50. Suresh, 2013 - Rao, S. (2013). In vitro and In vivo Effects of the Leaf Extracts of Cassia tora and Cassia sophera in Reducing the Cytotoxicity and Angiogenesis. British Biotechnology Journal, 3(3), 377–389. [Google Scholar] [Crossref]

51. Tayal, N., Srivastava, P., & Srivastava, N. (2019). Anti Angiogenic Activity of Carica papaya Leaf Extract. Journal of Pure and Applied Microbiology, 13(1), 567–571. https://doi.org/ 10.22207/ jpam.13 .1.64 [Google Scholar] [Crossref]

52. Totaan, I. D. V., Calma, Z. D., Nicdao, M. a. C., & Totaan, E. V. (2018). Antioxidant, Antibacterial and Anti-Clastogenic Activities of Lunasia amara, Blanco Leaf Extract. INTERNATIONAL JOURNAL OF ADVANCED SCIENTIFIC AND TECHNICAL RESEARCH, 1(8). https://doi.org/ 10.26808/ rs.st. i8v1.13 [Google Scholar] [Crossref]

53. Totaan, I. D. V., Calma, Z. D., Nicdao, M. a. C., & Totaan, E. V. (2018). Antioxidant, Antibacterial, and Anti-Clastogenic Activities of Lunasia amara, Blanco Leaf Extract. INTERNATIONAL JOURNAL OF ADVANCED SCIENTIFIC AND TECHNICAL RESEARCH, 1(8). [Google Scholar] [Crossref]

54. https://doi.org/10.26808/rs.st.i8v1.13 [Google Scholar] [Crossref]

55. Wang et al. (2021) - Wang, K., Chen, Q., Liu, N., Zhang, J., & Pan, X. (2021). Recent advances in, and challenges of, anti-angiogenesis agents for tumor chemotherapy based on vascular normalization. https://www.sciencedirect.com/science/article/abs/pii/S1359644621003329 [Google Scholar] [Crossref]

56. Wei & Zhang, 2024 - Wei, Q., & Zhang, Y. H. (2024). Flavonoids with Anti-Angiogenesis Function in Cancer. Molecules (Basel, Switzerland), 29(7), 1570. https://doi.org/10.3390/molecules29071570 [Google Scholar] [Crossref]

57. Wen et al. (2020) - Wen, B., Wei, Y. T., Mu, L. L., Wen, G. R., & Zhao, K. (2020). The molecular mechanisms of celecoxib in tumor development. Medicine, 99(40), e22544. https://doi.org/10.1097/ MD.0000000000022544 [Google Scholar] [Crossref]

58. WHO, 2024 - World Health Organization: WHO. (2024, February 1). Global cancer burden growing, amidst mounting need for services. World Health Organization. https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services [Google Scholar] [Crossref]

59. Zhenzhen Wan et al., 2023 - Wan, Z., Hirche, C., Fricke, F., Dragu, A., & Will, P. A. (2025). Chick Chorioallantoic Membrane as an in vivo Model for the Study of Angiogenesis and Lymphangiogenesis. Journal of vascular research, 62(2), 109–120. https://doi.org/ 10.1159/ 00054 2875 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles