ChatGPT and the Future of Travel: Exploring Trust and Adoption of AI-Powered Personalized Recommendations
Authors
Department of Nutrition and Hospitality Management, The University of Mississippi, P.O. Box 1848, University, MS, 38677 (USA)
Article Information
DOI: 10.47772/IJRISS.2025.910000266
Subject Category: Tourism & Hospitality
Volume/Issue: 9/10 | Page No: 3262-3271
Publication Timeline
Submitted: 2025-10-12
Accepted: 2025-10-18
Published: 2025-11-10
Abstract
The Travel and tourism industries are undergoing a remarkable transformation due to the development of technologies such as artificial intelligence (AI). Specifically, this industry is developing because of the rapid rise of generative AI like ChatGPT. This literature critically reviews the impact of ChatGPT and similar AI-driven travel recommendation systems on shaping the future of personalized travel experiences. This study aims to review existing literature with current trends, challenges, and prospects for utilizing ChatGPT in personalized travel recommendations. A systematic review was conducted by analyzing a comprehensive review of existing applications of ChatGPT and similar artificial intelligence (AI) technologies within the travel and tourism industries. This literature review intends to provide a future research agenda based on investigating existing studies. Findings showed that the application of generative AI, such as ChatGPT, can enhance travel planning and decision-making by providing guidelines, personalized plans, real-time recommendations, enhancing customer engagement, and improving operational efficiency. However, several challenges remain, such as data privacy, trust, and implementing such advanced technologies. This study provides an overview of generative AI like ChatGPT and offers significant guidelines for adopting AI in travel recommendation, while identifying several areas requiring further research. This systematic review serves as a reference for users who want to utilize generative AI tools such as ChatGPT in their travel planning.
Keywords
Artificial Intelligence, ChatGPT, Travel Industry
Downloads
References
1. Adiguzel, T., Kaya, M. H., & Cansu, F. K. (2023). Revolutionizing education with AI: Exploring the transformative potential of ChatGPT. Contemporary Educational Technology, 15(3). [Google Scholar] [Crossref]
2. Buhalis, D., O’Connor, P., & Leung, R. (2022). Smart hospitality: From smart cities and smart tourism towards agile business ecosystems in networked destinations. International Journal of Contemporary Hospitality Management, 35(1), 369–393. https://doi-org.umiss.idm.oclc.org/10.1108/IJCHM-04-2022-0497 [Google Scholar] [Crossref]
3. Buhalis, D., O’Connor, P., & Leung, R. (2022). Smart hospitality: From smart cities and smart tourism towards agile business ecosystems in networked destinations. International Journal of Contemporary Hospitality Management, 35(1), 369–393. https://doi.org/10.54536/ajth.v3i1.4690 [Google Scholar] [Crossref]
4. Camilleri, M. A. (2024). Factors affecting performance expectancy and intentions to use ChatGPT: Using SmartPLS to advance an information technology acceptance framework. Technological Forecasting and Social Change, 201, 123247. https://doi-org.umiss.idm.oclc.org/10.1016/j.techfore.2024.123247 [Google Scholar] [Crossref]
5. Carvalho, I., & Ivanov, S. (2024). ChatGPT for tourism: Applications, benefits and risks. Tourism Review, 79(2), 290–303. https://doi-org.umiss.idm.oclc.org/10.1108/TR-02-2023-0088 [Google Scholar] [Crossref]
6. Casheekar, A., Lahiri, A., Rath, K., Prabhakar, K. S., & Srinivasan, K. (2024). A contemporary review on chatbots, AI-powered virtual conversational agents, ChatGPT: Applications, open challenges and future research directions. Computer Science Review, 52, 100632. https://doi-org.umiss.idm.oclc.org/10.1016/j.cosrev.2024.100632 [Google Scholar] [Crossref]
7. ChatGPT, O. (2022). Optimizing language models for dialogue. OpenAI. Com, 30. [Google Scholar] [Crossref]
8. Chatterjee, J., & Dethlefs, N. (2023). This new conversational AI model can be your friend, philosopher, and guide... And even your worst enemy. Patterns, 4(1). [Google Scholar] [Crossref]
9. Chen, S., Han, X., Bilgihan, A., & Okumus, F. (2021). Customer engagement research in hospitality and tourism: A systematic review. Journal of Hospitality Marketing & Management, 30(7), 871–904. https://doiorg.umiss.idm.oclc.org/10.1080/19368623.2021.1903644 [Google Scholar] [Crossref]
10. Chi, O. H., Gursoy, D., & Chi, C. G. (2022). Tourists’ attitudes toward the use of artificially intelligent (AI) devices in tourism service delivery: Moderating role of service value seeking. Journal of Travel Research, 61(1), 170–185. https://doi-org.umiss.idm.oclc.org/10.1177/0047287520971054 [Google Scholar] [Crossref]
11. Chui, M., Roberts, R., & Yee, L. (2022). Generative AI is here: How tools like ChatGPT could change your business. Quantum Black AI by McKinsey, 20. [Google Scholar] [Crossref]
12. Deng, J., & Lin, Y. (2023). The benefits and challenges of ChatGPT: An overview. Benefits, 2(2), 2022. [Google Scholar] [Crossref]
13. Følstad, A., & Taylor, C. (2021). Investigating the user experience of customer service chatbot interaction: A framework for qualitative analysis of chatbot dialogues. Quality and User Experience, 6(1), 6. https://doi.org/10.1007/s41233-021-00046-5 [Google Scholar] [Crossref]
14. Frieder, S., Pinchetti, L., Griffiths, R.-R., Salvatori, T., Lukasiewicz, T., Petersen, P., & Berner, J. (2023). Mathematical capabilities of chatgpt. Advances in Neural Information Processing Systems, 36, 27699–27744. [Google Scholar] [Crossref]
15. Gimpel, H., Hall, K., Decker, S., Eymann, T., Lämmermann, L., Mädche, A., Röglinger, M., Ruiner, C., Schoch, M., & Schoop, M. (2023). Unlocking the power of generative AI models and systems such as GPT-4 and ChatGPT for higher education: A guide for students and lecturers. Hohenheim Discussion Papers in Business, Economics and Social Sciences. https://hdl.handle.net/10419/270970 [Google Scholar] [Crossref]
16. Gretzel, U., Sigala, M., Xiang, Z., & Koo, C. (2015). Smart tourism: Foundations and developments. Electronic Markets, 25, 179–188. https://doi.org/10.1007/s12525-015-0196-8 [Google Scholar] [Crossref]
17. Gursoy, D., Li, Y., & Song, H. (2023). ChatGPT and the hospitality and tourism industry: An overview of current trends and future research directions. Journal of Hospitality Marketing & Management, 32(5), 579–592. https://doi-org.umiss.idm.oclc.org/10.1080/19368623.2023.2211993 [Google Scholar] [Crossref]
18. Haleem, A., Javaid, M., & Singh, R. P. (2022). An era of ChatGPT as a significant futuristic support tool: A study on features, abilities, and challenges. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2(4), 100089. https://doi-org.umiss.idm.oclc.org/10.1016/j.tbench.2023.100089 [Google Scholar] [Crossref]
19. Hamid, R. A., Albahri, A. S., Alwan, J. K., Al-Qaysi, Z., Albahri, O. S., Zaidan, A. A., Alnoor, A., Alamoodi, A. H., & Zaidan, B. (2021). How smart is e-tourism? A systematic review of smart tourism recommendation system applying data management. Computer Science Review, 39, 100337. https://doi-org.umiss.idm.oclc.org/10.1016/j.cosrev.2020.100337 [Google Scholar] [Crossref]
20. He, K., Ji, L., Wu, C. W. D., & Tso, K. F. G. (2021). Using SARIMA–CNN–LSTM approach to forecast daily tourism demand. Journal of Hospitality and Tourism Management, 49, 25–33. [Google Scholar] [Crossref]
21. Hughes, A. (2023). ChatGPT: Everything you need to know about OpenAI’s GPT-3 tool. BBC Science Focus Magazine, 16. [Google Scholar] [Crossref]
22. Iskender, A. (2023). Holy or unholy? Interview with open AI’s ChatGPT. European Journal of Tourism Research, 34, 3414–3414. https://doi.org/10.54055/ejtr.v34i.3169 [Google Scholar] [Crossref]
23. Ivanov, S., & Soliman, M. (2023). Game of algorithms: ChatGPT implications for the future of tourism education and research. Journal of Tourism Futures, 9(2), 214–221. https://doi-org.umiss.idm.oclc.org/10.1108/JTF-02-2023-0038 [Google Scholar] [Crossref]
24. Kannan, R. (2024). Revolutionizing the tourism industry through artificial intelligence: A comprehensive review of ai integration, impact on customer experience, operational efficiency, and future trends. International Journal for Multidimensional Research Perspectives, 2(2), 01–14. [Google Scholar] [Crossref]
25. Karanjai, R. (2022). Targeted phishing campaigns using large scale language models. arXiv Preprint arXiv:2301.00665. [Google Scholar] [Crossref]
26. Kim, E. (2023). Amazon Warns Employees Not to Share Confidential Information with Chatgpt after Seeing Cases Where Its Answer ‘Closely Matches Existing Material’from Inside the Company. Business Insider, Available at: Www. Businessinsider. Com/Amazon-Chatgpt-Openai-Warns-Employees-Not-Shareconfidential-Information-Microsoft-2023-1 (Accessed 5 February 2023). [Google Scholar] [Crossref]
27. Kim, J. H., Kim, J., Kim, C., & Kim, S. (2023). Do you trust ChatGPTs? Effects of the ethical and quality issues of generative AI on travel decisions. Journal of Travel & Tourism Marketing, 40(9), 779–801. https://doi-org.umiss.idm.oclc.org/10.1080/10548408.2023.2293006 [Google Scholar] [Crossref]
28. Krügel, S., Ostermaier, A., & Uhl, M. (2023). The moral authority of ChatGPT. arXiv Preprint arXiv:2301.07098. [Google Scholar] [Crossref]
29. Kumari, M., Kumar, S., & Devi, N. (2025). The Impact of Service Automation and Robotics on Hospitality Business Models. In Metaverse and Sustainable Business Models in SMEs (pp. 317–338). IGI Global Scientific Publishing. [Google Scholar] [Crossref]
30. Lu, A. C. C., & Gursoy, D. (2015). A conceptual model of consumers’ online tourism confusion. International Journal of Contemporary Hospitality Management, 27(6), 1320–1342. https://doi-org.umiss.idm.oclc.org/10.1108/IJCHM-04-2014-0171 [Google Scholar] [Crossref]
31. Ma, S., Wang, X., Lei, Y., Shi, C., Yin, M., & Ma, X. (2024). “Are you really sure?” Understanding the effects of human self-confidence calibration in AI-assisted decision making. 1–20. https://doi-org.umiss.idm.oclc.org/10.1145/3613904.3642671 [Google Scholar] [Crossref]
32. Mearian, L. (2023). How enterprises can use ChatGPT and GPT-3. ComputerWorld. [Google Scholar] [Crossref]
33. Mich, L., & Garigliano, R. (2023). ChatGPT for e-Tourism: A technological perspective. Information Technology & Tourism, 25(1), 1–12. https://doi.org/10.1007/s40558-023-00248-x [Google Scholar] [Crossref]
34. Mondal, S., Das, S., & Vrana, V. G. (2023). How to bell the cat? A theoretical review of generative artificial intelligence towards digital disruption in all walks of life. Technologies, 11(2), 44. [Google Scholar] [Crossref]
35. Overflow, S. (2023). Why posting GPT and ChatGPT generated answers is not currently acceptable. [Google Scholar] [Crossref]
36. Parasuraman, A., & Colby, C. L. (2015). An updated and streamlined technology readiness index: TRI 2.0. Journal of Service Research, 18(1), 59–74. https://doi-org.umiss.idm.oclc.org/10.1177/1094670514539730 [Google Scholar] [Crossref]
37. Raihana Akter Nira. (2025). AI-Driven Hyper-Personalization in Hospitality: Application, Present and Future Opportunities, Challenges, and Guest Trust Issues. INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS), 9(4). 10.47772/IJRISS.2025.90400397 [Google Scholar] [Crossref]
38. Rehman Khan, H. U., Lim, C. K., Ahmed, M. F., Tan, K. L., & Bin Mokhtar, M. (2021). Systematic review of contextual suggestion and recommendation systems for sustainable e-tourism. Sustainability, 13(15), 8141. https://doi.org/10.3390/su13158141 [Google Scholar] [Crossref]
39. Ricci, F., Rokach, L., & Shapira, B. (2021). Recommender systems: Techniques, applications, and challenges. Recommender Systems Handbook, 1–35. [Google Scholar] [Crossref]
40. Shi, S., Gong, Y., & Gursoy, D. (2021). Antecedents of trust and adoption intention toward artificially intelligent recommendation systems in travel planning: A heuristic–systematic model. Journal of Travel Research, 60(8), 1714–1734. https://doi-org.umiss.idm.oclc.org/10.1177/0047287520966395 [Google Scholar] [Crossref]
41. Sun, W., Tang, S., & Liu, F. (2021). Examining perceived and projected destination image: A social media content analysis. Sustainability, 13(6), 3354. https://doi.org/10.3390/su13063354 [Google Scholar] [Crossref]
42. Tsang, N. K., Chan, G. K., & Ho, K. K. (2011). A holistic approach to understanding the use of travel guidebooks: Pre-, during, and post-trip behavior. Journal of Travel & Tourism Marketing, 28(7), 720–735. [Google Scholar] [Crossref]
43. Van Dis, E. A., Bollen, J., Zuidema, W., Van Rooij, R., & Bockting, C. L. (2023). ChatGPT: five priorities for research. Nature, 614(7947), 224–226. https://doi-org.umiss.idm.oclc.org/10.1080/10548408.2011.611741 [Google Scholar] [Crossref]
44. Värtinen, S., Hämäläinen, P., & Guckelsberger, C. (2022). Generating role-playing game quests with GPT language models. IEEE Transactions on Games, 16(1), 127–139. [Google Scholar] [Crossref]
45. Verganti, R., Vendraminelli, L., & Iansiti, M. (2020). Innovation and design in the age of artificial intelligence. Journal of Product Innovation Management, 37(3), 212–227. https://doi-org.umiss.idm.oclc.org/10.1111/jpim.12523 [Google Scholar] [Crossref]
46. Wang, P. Q. (2025). Personalizing guest experience with generative AI in the hotel industry: There’s more to it than meets a Kiwi’s eye. Current Issues in Tourism, 28(4), 527–544. https://doi-org.umiss.idm.oclc.org/10.1080/13683500.2023.2300030 [Google Scholar] [Crossref]
47. Weinstein, B. (2023). Why smart leaders use ChatGPT ethically and how they do it. Forbes Leadership Strategy. Available Online: Https://Www. Forbes. Com/Sites/Bruceweinstein/2023/02/24/Why-Smart-Leaders-Use-Chatgpt-Ethically-and-How-Theydo-It. [Google Scholar] [Crossref]
48. Wong, I. A., Lian, Q. L., & Sun, D. (2023). Autonomous travel decision-making: An early glimpse into ChatGPT and generative AI. Journal of Hospitality and Tourism Management, 56, 253–263. https://doi-org.umiss.idm.oclc.org/10.1016/j.jhtm.2023.06.022 [Google Scholar] [Crossref]
49. Wong, I. A., Lin, S. K., Lin, Z. C., & Xiong, X. (2022). Welcome to stay-at-home travel and virtual attention restoration. Journal of Hospitality and Tourism Management, 51, 207–217. https://doi-org.umiss.idm.oclc.org/10.1016/j.jhtm.2022.03.016 [Google Scholar] [Crossref]
50. Wu, S., Wong, I. A., & Lin, Z. C. (2021). Understanding the role of atmospheric cues of travel apps: A synthesis between media richness and stimulus–organism–response theory. Journal of Hospitality and Tourism Management, 49, 226–234. https://doi-org.umiss.idm.oclc.org/10.1016/j.jhtm.2021.09.014 [Google Scholar] [Crossref]
51. Zhuo, T. Y., Huang, Y., Chen, C., & Xing, Z. (2023). Exploring ai ethics of chatgpt: A diagnostic analysis. arXiv Preprint arXiv:2301.12867, 10(4). [Google Scholar] [Crossref]
52. Zielinski, C., Winker, M., Aggarwal, R., Ferris, L., Heinemann, M., Lapeña, J. F., Pai, S., & Citrome, L. (2023). Chatbots, ChatGPT, and scholarly manuscripts-WAME recommendations on ChatGPT and chatbots in relation to scholarly publications. Afro-Egyptian Journal of Infectious and Endemic Diseases, 13(1), 75–79. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- A Bibliometric Analysis of Scopus Literature (1987–2024) On Smart Technologies in Hospitality: From Artificial Intelligence to Augmented Reality.
- Gendered Food Environments: Differences in Food Availability and Perceptions Among Malaysian University Students
- Hospitality Inclusive Internship System (HIIS): An Innovative Internship Matching Platform for Person with Disabilities (PWD) Students
- Cultural Preservation Practices of Selected Cultural Sites, Province of Bohol
- Conceptual Role of Organizational Learning on Clan Culture and Performance of Small and Medium-Sized Food Tourism Enterprises (SMFTES)