Machine Learning for Fundraising Network Development in Indonesian Educational and Social Foundations

Authors

Mulyono, Mulyono

Islamic Education Management Study Program, Maulana Malik Ibrahim State Islamic University, Malang (Indonesia)

Article Information

DOI: 10.47772/IJRISS.2026.10100492

Subject Category: Educational Management

Volume/Issue: 10/1 | Page No: 6302-6328

Publication Timeline

Submitted: 2026-01-29

Accepted: 2026-02-03

Published: 2026-02-14

Abstract

This study explores the application of machine learning (ML) in developing fundraising networks for educational and social foundations in Indonesia, using Yayasan Pendidikan Sosial Dan Dakwah Ulul Albab as a case study. Operating in Malang City and Ponorogo Regency with eight programs requiring approximately IDR 815 million annually, the foundation faces persistent fundraising challenges. Employing a mixed-method approach, we developed an ML-based donor prediction model using Random Forest, Gradient Boosting, and Neural Network algorithms, simulated with synthetic data (n=5,000) representing Indonesian donor characteristics. Results demonstrate 87.3% accuracy in donor propensity prediction and 82.6% in donation amount forecasting. Qualitative analysis through stakeholder interviews (n=15) revealed implementation barriers including digital literacy gaps and data infrastructure limitations. The proposed ML-Integrated Fundraising Framework (ML-IFF) combines predictive analytics with culturally adapted engagement strategies, projecting 45-60% improvement in fundraising efficiency. This research contributes a contextual ML application framework for Indonesian nonprofit organizations, addressing the intersection of technological innovation and social sector sustainability in emerging markets.

Keywords

machine learning, fundraising networks, nonprofit organizations, donor prediction

Downloads

References

1. Ahmad, I., Kusuma, H., & Prasetyo, B. (2023). Transfer learning applications in Indonesian nonprofit donor prediction: A small-sample approach. Journal of Nonprofit & Public Sector Marketing, 35(2), 178-203. https://doi.org/10.1080/10495142.2023.2187654 [Google Scholar] [Crossref]

2. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T [Google Scholar] [Crossref]

3. Arafa, A., El-Fishawy, N., Badawy, M., & Radad, M. (2021). RFM-based segmentation approach utilizing temporal features and machine learning models for churning prediction in nonprofit organizations. IEEE Access, 9, 112415-112428. https://doi.org/10.1109/ACCESS.2021.3102923 [Google Scholar] [Crossref]

4. Arora, S., & Kumar, R. (2022). Donor segmentation using machine learning: K-means clustering approach for nonprofit organizations. International Journal of Nonprofit and Voluntary Sector Marketing, 27(4), e1765. https://doi.org/10.1002/nvsm.1765 [Google Scholar] [Crossref]

5. Barman, E. (2021). Doing well by doing good: The changing face of philanthropy in Indonesia. Nonprofit Management and Leadership, 31(4), 673-691. https://doi.org/10.1002/nml.21459 [Google Scholar] [Crossref]

6. BAZNAS & IPB. (2022). Indonesia zakat outlook 2022. National Zakat Board and Bogor Agricultural University. [Google Scholar] [Crossref]

7. Beik, I. S. (2019). Towards an establishment of an efficient and sound zakat system. Journal of Indonesian Economy and Business, 34(1), 1-14. https://doi.org/10.22146/jieb.43841 [Google Scholar] [Crossref]

8. Bekkers, R., & Wiepking, P. (2021). A literature review of empirical studies of philanthropy: Eight mechanisms that drive charitable giving. Nonprofit and Voluntary Sector Quarterly, 50(5), 998-1028. https://doi.org/10.1177/08997640211055381 [Google Scholar] [Crossref]

9. Bennett, R., & Savani, S. (2022). Predicting donor retention using machine learning: An empirical study from UK charities. International Journal of Nonprofit and Voluntary Sector Marketing, 27(3), e1735. https://doi.org/10.1002/nvsm.1735 [Google Scholar] [Crossref]

10. Bethmann, A., Kaltenborn, M., & Sauermann, P. (2021). Donor retention and donor segmentation: Analyzing key factors in charity. Nonprofit Management and Leadership, 31(4), 781-802. https://doi.org/10.1002/nml.21463 [Google Scholar] [Crossref]

11. Boateng, F. K., Omar, M., & Kankam-Kwarteng, C. (2020). Predicting donor behavior using machine learning techniques: A case study of NPOs in Ghana. International Journal of Organizational Analysis, 28(6), 1271-1289. https://doi.org/10.1108/IJOA-09-2019-1879 [Google Scholar] [Crossref]

12. Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706qp063oa [Google Scholar] [Crossref]

13. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324 [Google Scholar] [Crossref]

14. Budiman, A., & Kusuma, D. W. (2021). Fundraising challenges in Indonesian educational foundations: A qualitative investigation. Journal of Asian Public Policy, 14(3), 312-331. https://doi.org/10.1080/17516234.2021.1892347 [Google Scholar] [Crossref]

15. Burnett, K. (2002). Relationship fundraising: A donor-based approach to the business of raising money (2nd ed.). Jossey-Bass. [Google Scholar] [Crossref]

16. Bussell, H., & Forbes, D. (2021). Application of machine learning to predict donor behavior in higher education advancement: A case study. [Google Scholar] [Crossref]

17. Cermak, M., McGovern, G., & Terakawa, N. (2022). Deep learning for donation prediction: Neural network applications in subscription-based philanthropy. Expert Systems with Applications, 189, 116078. https://doi.org/10.1016/j.eswa.2021.116078 [Google Scholar] [Crossref]

18. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785-794). ACM. https://doi.org/10.1145/2939672.2939785 [Google Scholar] [Crossref]

19. Chen, Y., & Khern-am-nuai, W. (2023). Machine learning in nonprofit operations: Applications, opportunities, and challenges. Production and Operations Management, 32(4), 1241-1259. https://doi.org/10.1111/poms.13925 [Google Scholar] [Crossref]

20. Chowdhury, M. T. H., Sarkar, A., Paul, S. K., & Moktadir, M. A. (2022). A case study on strategies to deal with the impacts of COVID-19 pandemic in the food and beverage industry. Operations Management Research, 15(1-2), 166-178. https://doi.org/10.1007/s12063-020-00166-9 [Google Scholar] [Crossref]

21. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018 [Google Scholar] [Crossref]

22. Cryder, C. E., Loewenstein, G., & Scheines, R. (2013). The donor is in the details. Organizational Behavior and Human Decision Processes, 120(1), 15-23. https://doi.org/10.1016/j.obhdp.2012.08.002 [Google Scholar] [Crossref]

23. Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M. D. (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002 [Google Scholar] [Crossref]

24. Effendy, T., & Sugandi, Y. (2022). Digital transformation in Indonesian nonprofit organizations: Enablers and barriers. Journal of Information Technology for Development, 28(3), 445-468. https://doi.org/10.1080/02681102.2022.2053104 [Google Scholar] [Crossref]

25. Fauzia, A. (2017). Islamic philanthropy in Indonesia: Modernization, Islamization, and social justice. Austrian Academy of Sciences Press. [Google Scholar] [Crossref]

26. Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215-239. https://doi.org/10.1016/0378-8733(78)90021-7 [Google Scholar] [Crossref]

27. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. [Google Scholar] [Crossref]

28. Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1360-1380. https://doi.org/10.1086/225469 [Google Scholar] [Crossref]

29. Guo, C., & Saxton, G. D. (2020). The quest for attention: Nonprofit advocacy in a social media age. Journal of Public Administration Research and Theory, 30(1), 151-168. https://doi.org/10.1093/jopart/muz016 [Google Scholar] [Crossref]

30. Hager, M. A., Rooney, P. M., & Pollak, T. H. (2002). Variations in overhead and fundraising efficiency measures: The influence of size, age, and subsector. Indiana University Center on Philanthropy. [Google Scholar] [Crossref]

31. Hasan, M., Hermawan, A., & Suryanto, T. (2022). Nonprofit sustainability in provincial Indonesia: Challenges and adaptive strategies. Voluntas: International Journal of Voluntary and Nonprofit Organizations, 33(4), 789-805. https://doi.org/10.1007/s11266-021-00398-2 [Google Scholar] [Crossref]

32. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer. https://doi.org/10.1007/978-0-387-84858-7 [Google Scholar] [Crossref]

33. Hospedales, T., Antoniou, A., Micaelli, P., & Storkey, A. (2021). Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9), 5149-5169. https://doi.org/10.1109/TPAMI.2021.3079209 [Google Scholar] [Crossref]

34. Indonesia Fundraising Roundtable. (2023). Indonesian nonprofit technology adoption report 2023. IFR Publications. [Google Scholar] [Crossref]

35. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical learning with applications in R (2nd ed.). Springer. https://doi.org/10.1007/978-1-0716-1418-1 [Google Scholar] [Crossref]

36. Kementerian Sosial Republik Indonesia. (2022). Statistik kesejahteraan sosial 2022. Pusat Data dan Informasi Kesejahteraan Sosial. [Google Scholar] [Crossref]

37. Khan, S., Rahmani, H., Shah, S. A. A., & Bennamoun, M. (2018). A guide to convolutional neural networks for computer vision. Synthesis Lectures on Computer Vision, 8(1), 1-207. https://doi.org/10.2200/S00822ED1V01Y201712COV015 [Google Scholar] [Crossref]

38. Kim, M., & Mason, D. P. (2020). Are you ready: Financial management, operating reserves, and the immediate impact of COVID-19 on nonprofits. Nonprofit and Voluntary Sector Quarterly, 49(6), 1191-1209. https://doi.org/10.1177/0899764020964584 [Google Scholar] [Crossref]

39. Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR). https://doi.org/10.48550/arXiv.1412.6980 [Google Scholar] [Crossref]

40. Knowles, S. R., & Gomes, R. (2021). Using machine learning to predict donor retention: A case study of a large nonprofit organization. Journal of Nonprofit Education and Leadership, 11(2), 143-162. https://doi.org/10.18666/JNEL-2021-V11-I2-10345 [Google Scholar] [Crossref]

41. Kong, E., & Prior, D. (2008). An intellectual capital perspective of competitive advantage in nonprofit organisations. International Journal of Nonprofit and Voluntary Sector Marketing, 13(2), 119-128. https://doi.org/10.1002/nvsm.311 [Google Scholar] [Crossref]

42. Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. Educational and Psychological Measurement, 30(3), 607-610. https://doi.org/10.1177/001316447003000308 [Google Scholar] [Crossref]

43. Kumar, V., & Reinartz, W. (2018). Customer relationship management: Concept, strategy, and tools (3rd ed.). Springer. https://doi.org/10.1007/978-3-662-55381-7 [Google Scholar] [Crossref]

44. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539 [Google Scholar] [Crossref]

45. Lee, Y. J., & Srinivasan, S. (2020). Nonprofit organizations and social network analysis: A scoping review. Nonprofit Management and Leadership, 30(3), 365-384. https://doi.org/10.1002/nml.21391 [Google Scholar] [Crossref]

46. Li, J., Wang, R., & Li, M. (2022). Predicting donor retention using ensemble machine learning methods. IEEE Access, 10, 23456-23468. https://doi.org/10.1109/ACCESS.2022.3154231 [Google Scholar] [Crossref]

47. Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J., & Tang, J. (2021). Self-supervised learning: Generative or contrastive. IEEE Transactions on Knowledge and Data Engineering, 35(1), 857-876. https://doi.org/10.1109/TKDE.2021.3090866 [Google Scholar] [Crossref]

48. MacLaughlin, S., & Clarke, C. A. (2021). Charitable giving report: How fundraising performed in 2020. Blackbaud Institute. [Google Scholar] [Crossref]

49. Matz, S. C., Appel, R. E., & Kosinski, M. (2020). Privacy in the age of psychological targeting. Current Opinion in Psychology, 31, 116-121. https://doi.org/10.1016/j.copsyc.2019.08.010 [Google Scholar] [Crossref]

50. Mitchell, T. M. (1997). Machine learning. McGraw-Hill. [Google Scholar] [Crossref]

51. Mulyono, Mulyono. "Strategic Planning for Generative AI Utilization to Design Financing Management for Islamic Education Foundations in Indonesia". International Journal of Innovative Science and Research Technology, 10 Nomor 12 (2025), 1559-1567. DOI: https://doi.org/10.38124/ijisrt/25dec1131 [Google Scholar] [Crossref]

52. Mulyono, Mulyono. Utilization of Large Language Models (LLMs) in Designing Financial Management for Rural Private Madrasah in Indonesia". International Journal of Innovative Science and Research Technology (IJISRT) IJISRT25DEC1272 (2025), 2741-2750, DOI: https://doi.org/10.38124/ijisrt/25dec1272 [Google Scholar] [Crossref]

53. Naim, M. F., & Lenka, U. (2018). Development and retention of Generation Y employees: A conceptual framework. Employee Relations, 40(2), 433-455. https://doi.org/10.1108/ER-09-2016-0172 [Google Scholar] [Crossref]

54. Newman, M. E. J. (2018). Networks (2nd ed.). Oxford University Press. [Google Scholar] [Crossref]

55. Nurhasanah, S., & Harahap, R. D. (2021). The role of social foundations in Indonesian education: A systematic review. International Journal of Educational Development, 87, 102498. https://doi.org/10.1016/j.ijedudev.2021.102498 [Google Scholar] [Crossref]

56. Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359. https://doi.org/10.1109/TKDE.2009.191 [Google Scholar] [Crossref]

57. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825-2830. [Google Scholar] [Crossref]

58. Pratiwi, D. N., & Santoso, B. (2023). Donor behavior in Indonesian educational foundations: The role of trust and transparency. Asian Journal of Fundraising and Social Investment, 2(1), 45-67. https://doi.org/10.1108/AJFSI-11-2022-0089 [Google Scholar] [Crossref]

59. Putnam, R. D. (2000). Bowling alone: The collapse and revival of American community. Simon & Schuster. https://doi.org/10.1145/358916.361990 [Google Scholar] [Crossref]

60. Rijmenam, M. V., Schweitzer, F., & Huysman, M. (2019). AI in the nonprofit sector. Stanford Social Innovation Review, 17(4), 32-37. [Google Scholar] [Crossref]

61. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. https://doi.org/10.1038/323533a0 [Google Scholar] [Crossref]

62. Salamon, L. M., & Anheier, H. K. (1998). Social origins of civil society: Explaining the nonprofit sector cross-nationally. Voluntas: International Journal of Voluntary and Nonprofit Organizations, 9(3), 213-248. https://doi.org/10.1023/A:1022058200985 [Google Scholar] [Crossref]

63. Sargeant, A., & Woodliffe, L. (2007). Gift giving: An interdisciplinary review. International Journal of Nonprofit and Voluntary Sector Marketing, 12(4), 275-307. https://doi.org/10.1002/nvsm.308 [Google Scholar] [Crossref]

64. Saxton, G. D., & Wang, L. (2014). The social network effect: The determinants of giving through social media. Nonprofit and Voluntary Sector Quarterly, 43(5), 850-868. https://doi.org/10.1177/0899764013485159 [Google Scholar] [Crossref]

65. Scott, J. (2017). Social network analysis (4th ed.). SAGE Publications. https://doi.org/10.4135/9781529716597 [Google Scholar] [Crossref]

66. Setiawan, R., Wibowo, A., & Rahman, F. (2022). Machine learning implementation barriers in Indonesian small and medium nonprofits. Technology in Society, 71, 102094. [Google Scholar] [Crossref]

67. https://doi.org/10.1016/j.techsoc.2022.102094 [Google Scholar] [Crossref]

68. Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 60. https://doi.org/10.1186/s40537-019-0197-0 [Google Scholar] [Crossref]

69. Smidt, C. (2003). Religion as social capital: Producing the common good. Baylor University Press. [Google Scholar] [Crossref]

70. Suharso, P., & Wibowo, D. H. (2020). Philanthropy and education in Indonesia: The role of private foundations. Journal of Philanthropy and Marketing, 25(3), e1682. https://doi.org/10.1002/nvsm.1682 [Google Scholar] [Crossref]

71. Tan, P. N., Steinbach, M., & Kumar, V. (2019). Introduction to data mining (2nd ed.). Pearson. [Google Scholar] [Crossref]

72. Tremblay-Boire, J., & Prakash, A. (2017). Will you trust me? How individual American donors respond to informational signals regarding local and global humanitarian charities. Voluntas: International Journal of Voluntary and Nonprofit Organizations, 28(2), 621-647. https://doi.org/10.1007/s11266-016-9782-4 [Google Scholar] [Crossref]

73. Verhaert, G. A., & Van den Poel, D. (2011). Empathy as added value in predicting donation behavior. Journal of Business Research, 64(12), 1288-1295. https://doi.org/10.1016/j.jbusres.2010.12.024 [Google Scholar] [Crossref]

74. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511815478 [Google Scholar] [Crossref]

75. Wiepking, P., & Bekkers, R. (2012). Who gives? A literature review of predictors of charitable giving. Part Two: Gender, family composition and income. Voluntary Sector Review, 3(2), 217-245. https://doi.org/10.1332/204080512X649379 [Google Scholar] [Crossref]

76. World Bank. (2023). Indonesia economic prospects: Navigating uncertainty. World Bank Group. [Google Scholar] [Crossref]

77. Wu, Y., Liu, Y., Huang, C., Zhang, H., & Wang, F. Y. (2022). Application of neural networks in nonprofit donor management: A systematic review. IEEE Transactions on Computational Social Systems, 9(3), 789-803. https://doi.org/10.1109/TCSS.2021.3117234 [Google Scholar] [Crossref]

78. Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295-316. https://doi.org/10.1016/j.neucom.2020.07.061 [Google Scholar] [Crossref]

79. Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems (Vol. 27, pp. 3320-3328). https://doi.org/10.48550/arXiv.1411.1792 [Google Scholar] [Crossref]

80. Zhou, Z. H. (2021). Machine learning. Springer Nature. https://doi.org/10.1007/978-981-15-1967-3 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles