Advances in Solar Cell Technologies: A Comprehensive Review of Material Synthesis, Structural Properties, Efficiency and Diverse Applications
Authors
Nanomaterial and Metal Chalcogenide Research Lab* Department of Chemistry St. Andrew’s College, Gorakhpur, UP (India)
Nanomaterial and Metal Chalcogenide Research Lab* Department of Chemistry St. Andrew’s College, Gorakhpur, UP (India)
Article Information
DOI: 10.51244/IJRSI.2025.120800164
Subject Category: Chemistry
Volume/Issue: 12/8 | Page No: 1813-1819
Publication Timeline
Submitted: 2025-08-07
Accepted: 2025-08-12
Published: 2025-09-16
Abstract
Solar cells represent one of the most promising renewable energy technologies for addressing global energy demands and climate change challenges. This paper provides a comprehensive review of photovoltaic technology, examining the fundamental principles underlying solar cell operation, various cell types and their efficiencies, key material properties, synthesis methods, and emerging applications. Current commercial silicon-based technologies achieve efficiencies of 20-26%, while emerging perovskite and multi-junction cells demonstrate potential for efficiencies exceeding 40%. Manufacturing techniques continue to evolve, with thin-film deposition and advanced processing methods reducing costs while improving performance. Future applications range from building-integrated photovoltaic to space-based solar power systems, positioning solar technology as a cornerstone of sustainable energy infrastructure.
Keywords
photovoltaic, solar cells, semiconductor devices, renewable energy, efficiency, perovskite, silicon
Downloads
References
1. Green, M. A., et al. (2024). Solar cell efficiency tables (version 63). Progress in Photovoltaics, 32(1), 3-13. [Google Scholar] [Crossref]
2. Yoshikawa, K., et al. (2017). Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2, 17032. [Google Scholar] [Crossref]
3. Correa-Baena, J. P., et al. (2017). Promises and challenges of perovskite solar cells. Science, 358(6364), 739-744. [Google Scholar] [Crossref]
4. Polman, A., et al. (2016). Photovoltaic materials: Present efficiencies and future challenges. Science, 352(6283), aad4424. [Google Scholar] [Crossref]
5. Battaglia, C., et al. (2016). High-efficiency crystalline silicon solar cells: status and perspectives. Energy & Environmental Science, 9(5), 1552-1576. [Google Scholar] [Crossref]
6. Fthenakis, V. M., & Kim, H. C. (2011). Photovoltaics: Life-cycle analyses. Solar Energy, 85(8), 1609-1628. [Google Scholar] [Crossref]
7. Haegel, N. M., et al. (2019). Terawatt-scale photovoltaics: Transform global energy. Science, 364(6443), 836-838. [Google Scholar] [Crossref]
8. Almansouri, I., et al. (2015). Superstratesubstrate tandem solar cells using amorphous silicon and cadmium telluride. IEEE Journal of Photovoltaics, 5(3), 968-976. [Google Scholar] [Crossref]
9. Schneller, E. J., et al. (2023). Roadmap on organic-inorganic hybrid perovskite semiconductors and devices. APL Materials, 11(10), 109202. [Google Scholar] [Crossref]
10. Louwen, A., et al. (2016). Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development. Nature Communications, 7, 13728. [Google Scholar] [Crossref]
11. Kumar, B. Singh, and M. Patel, "Graphene oxide membranes for selective ion separation: Mechanisms and applications," J. Membr. Sci., vol. 640, pp.119789, 2021. [Google Scholar] [Crossref]
12. R. Zhang et al., "TiO₂ nanoparticles for photocatalytic water treatment: Effect of crystal phase and particle size," Appl. Catal. B, vol. 298, pp. 120563, 2021. [Google Scholar] [Crossref]
13. S. Sharma, K. Reddy, and P. Gupta, "Iron oxide nanoparticles for environmental remediation: Synthesis, characterization, and magnetic separation," J. Nanopart. Res., vol. 24, no. 3, pp. 1-15, 2022. [Google Scholar] [Crossref]
14. M. Park, J. Kim, and H. Lee, "CdSe quantum dots for high-efficiency solar cells: Size-dependent properties and device optimization," ACS Nano, vol. 16, no. 2, pp. 2145-2158, 2022. [Google Scholar] [Crossref]
15. L. Chen, Y. Wang, and Z. Liu, "ZnSe nanoparticles as electron transport layers in perovskite solar cells," Adv. Energy Mater., vol. 12, no. 15, pp. 2200456, 2022. [Google Scholar] [Crossref]
16. U.S. Environmental Protection Agency, "Nanomaterial research strategy," EPA Rep. 601/R-22/001, Research Triangle Park, NC, USA, 2022. [Google Scholar] [Crossref]
17. National Renewable Energy Laboratory, "Quantum dot solar cell efficiency analysis," NREL Tech. Rep. TP-5900-82345, Golden, CO, USA, 2023. [Google Scholar] [Crossref]
18. D. Gupta, S. Patel, and R. Kumar, "Environmental applications of nanomaterials: Current status and future prospects," Environ. Sci. Nano, vol. 9, no. 4, pp. 1123-1145, 2022.. [Google Scholar] [Crossref]
19. Parthiban, S., et al. (2021). Recent advances in chalcogenide thin films for solar cell applications. Solar Energy Materials and Solar Cells, 215, 110651. [Google Scholar] [Crossref]
20. Kumar, S., et al. (2020). Comprehensive characterization of metal chalcogenide thin films. Journal of Materials Science, 55, 1-25. [Google Scholar] [Crossref]
21. Zhang, L., et al. (2019). Temperature-dependent optical properties of semiconductor thin films. Applied Physics Letters, 115, 231102. [Google Scholar] [Crossref]
22. Johnson, M., et al. (2022). pH effects in chemical bath deposition of chalcogenide films. Thin Solid Films, 720, 138523. [Google Scholar] [Crossref]