Green Synthesis of Cobalt Oxide/Gold (Coo/Au) Bimetallic Nanoparticles Using Sinapinic Acid: A Comprehensive Study

Authors

Neethu Sundaresan

Department of Chemistry, Milad E Sherif Memorial College, Kayamkulam, University of Kerala (India)

Article Information

DOI: 10.51244/IJRSI.2025.120800157

Subject Category: Chemistry

Volume/Issue: 12/8 | Page No: 1752-1759

Publication Timeline

Submitted: 2025-08-30

Accepted: 2025-09-05

Published: 2025-09-16

Abstract

This study reports the successful green synthesis of cobalt oxide/gold (CoO/Au) bimetallic nanoparticles using sinapinic acid as both a reducing and stabilizing agent. The eco-friendly synthesis approach eliminates the need for hazardous chemicals while producing nanoparticles with superior properties. The formation of CoO/Au bimetallic nanoparticles was confirmed through visual observation of color changes from brown to greyish-black upon addition of HAuCl₄ to the CoO nanoparticle solution. Comprehensive characterization using UV-Visible spectroscopy revealed distinct surface plasmon resonance peaks at 350 nm and 650 nm corresponding to CoO and Au components, respectively. FTIR analysis confirmed the role of sinapinic acid functional groups in nanoparticle reduction and stabilization, with a characteristic Co-O-Au stretching band at 575 cm⁻¹. X-ray diffraction patterns demonstrated the face-centered cubic (FCC) crystalline structure of the bimetallic system, while transmission electron microscopy revealed discrete, spherical nanoparticles with an average diameter of 24.4 nm and single crystalline nature. The synthesized CoO/Au bimetallic nanoparticles exhibit enhanced structural stability and demonstrate significant potential for applications in catalysis, biosensing, and biomedical fields.

Keywords

Bimetallic nanoparticles, Green synthesis, Sinapinic acid, Cobalt oxide, Gold nanoparticles, Surface plasmon resonance

Downloads

References

1. Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv 2021;2:1821–71. [Google Scholar] [Crossref]

2. Gour A, Jain NK. Advances in green synthesis of nanoparticles. Artif Cells Nanomed Biotechnol 2019;47:844–50. [Google Scholar] [Crossref]

3. Eker F, Duman H, Akdaşçi E, et al. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024;29:3482. [Google Scholar] [Crossref]

4. Kulkarni N, Muddapur U. Biosynthesis of Metal Nanoparticles: A Review. J Nanotechnol 2014;2014:1–8. [Google Scholar] [Crossref]

5. Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arab J Chem 2019;12:3576–600. [Google Scholar] [Crossref]

6. Chavali MS, Nikolova MP. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl Sci 2019;1:607. [Google Scholar] [Crossref]

7. Ying S, Guan Z, Ofoegbu PC, et al. Green synthesis of nanoparticles: Current developments and limitations. Environ Technol Innov 2022;26:102336. [Google Scholar] [Crossref]

8. Zhang Y, Cui X, Shi F, et al. Bimetallic nanocrystals: structure, controllable synthesis and applications in catalysis, energy and sensing. Chem Soc Rev 2012;41:7938–7961. [Google Scholar] [Crossref]

9. Ferrando R, Jellinek J, Johnston RL. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem Rev 2008;108:845–910. [Google Scholar] [Crossref]

10. Toshima N, Yonezawa T. Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem 1998;22:1179–1201. [Google Scholar] [Crossref]

11. Sankar M, Dimitratos N, Miedziak PJ, et al. Designing bimetallic catalysts for a green and sustainable future. Chem Soc Rev 2012;41:8099–8139. [Google Scholar] [Crossref]

12. Wang D, Li Y. Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv Mater 2011;23:1044–1060. [Google Scholar] [Crossref]

13. Gilroy KD, Ruditskiy A, Peng HC, et al. Bimetallic nanocrystals: syntheses, properties, and applications. Chem Rev 2016;116:10414–10472. [Google Scholar] [Crossref]

14. Singh P, Kim YJ, Zhang D, et al. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 2016;34:588–599. [Google Scholar] [Crossref]

15. Iravani S, Korbekandi H, Mirmohammadi SV, et al. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 2014;9:385–406. [Google Scholar] [Crossref]

16. Duan H, Wang D, Li Y. Green chemistry for nanoparticle synthesis. Chem Soc Rev 2015;44:5778–5792. [Google Scholar] [Crossref]

17. Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 2013;31:346–356. [Google Scholar] [Crossref]

18. Kharissova OV, Dias HVR, Kharisov BI, et al. The greener synthesis of nanoparticles. Trends Biotechnol 2013;31:240–248. [Google Scholar] [Crossref]

19. Ghosh S, Patil S, Ahire M, et al. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine 2012;7:483–496. [Google Scholar] [Crossref]

20. Makarov VV, Love AJ, Sinitsyna OV, et al. "Green" nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 2014;6:35–44. [Google Scholar] [Crossref]

21. Ahmed S, Ahmad M, Swami BL, et al. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res 2016;7:17–28. [Google Scholar] [Crossref]

22. Kuppusamy P, Yusoff MM, Maniam GP, et al. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharm J 2016;24:473–484. [Google Scholar] [Crossref]

23. Raveendran P, Fu J, Wallen SL. Completely "green" synthesis and stabilization of metal nanoparticles. J Am Chem Soc 2003;125:13940–13941. [Google Scholar] [Crossref]

24. Nadagouda MN, Varma RS. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem 2008;10:859–862. [Google Scholar] [Crossref]

25. Virkutyte J, Varma RS. Green synthesis of metal nanoparticles: biodegradable polymers and applications in environmental science. Chem Sci 2011;2:837–846. [Google Scholar] [Crossref]

26. Patra JK, Baek KH. Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014;2014:417305. [Google Scholar] [Crossref]

27. Nasrollahzadeh M, Sajadi SM, Rostami-Vartouni A, et al. Green synthesis of the Cu/Fe3O4 nanoparticles using Euphorbia heterophylla leaf extract: catalytic activity for the reduction of 4-nitrophenol and Rhodamine B. J Colloid Interface Sci 2016;466:360–368. [Google Scholar] [Crossref]

28. Dauthal P, Mukhopadhyay M. Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res 2016;55:9557–9577. [Google Scholar] [Crossref]

29. Kharissova OV, Kharisov BI, Ruiz-Ruiz VD. Greener synthesis of chemical compounds and materials. R Soc Open Sci 2019;6:191378. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles