Surface Activity and Thermodynamic Assessment of Surfactants Derived from Oreochromis Niloticus Oil (Nile Tilapia Fish)
Authors
Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, Awka (Nigeria)
Department of Chemistry, Federal College of Education (Technical) Umunze, Anambra State (Nigeria)
Department of Applied Sciences, Federal University of Allied Health Sciences, Enugu (Nigeria)
Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, Awka (Nigeria)
Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, Awka (Nigeria)
Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, Awka (Nigeria)
Article Information
DOI: 10.51244/IJRSI.2025.120800328
Subject Category: Chemistry
Volume/Issue: 12/9 | Page No: 3630-3648
Publication Timeline
Submitted: 2025-08-24
Accepted: 2025-10-01
Published: 2025-10-11
Abstract
Surfactants were synthesized from Oreochromis niloticus (Nile Tilapia) oil via sulphonation and evaluated for surface-active and thermodynamic properties. The extracted oil had an acid value of 9.56 mg KOH/g, refractive index of 1.46, density of 1341 kg/m³, viscosity of 19.52 mPa.s, and lipid content of 18.20%. Fourier Transform Infrared Spectroscopy (FTIR) identified carboxylic acids and esters as major functional groups, while Gas Chromatography–Mass Spectrometry (GC-MS) detected oleic, palmitoleic, and decanoic acids among others. Three surfactants (NT-25, NT-30, NT-45) were obtained at sulphonation temperatures of 25°C, 30°C, and 45°C, respectively. They effectively reduced surface tension to 31.0, 36.0, and 44.0 mN/m, with critical micelle concentrations (CMC) of 2.86, 3.16, and 3.55 mmol/L, respectively. Wetting times ranged from 7.21 to 19.00 seconds, and foam stability reached 96% (NT-25), 95% (NT-30), and 96% (NT-45). NT-25 and NT-30 exhibited higher surface pressure at CMC (∏cmc), greater surface excess concentration (Γmax), and lower minimum surface area per molecule (A), enhancing their surface tension reduction compared to NT-45. These results suggest NT-25 and NT-30 possess excellent wetting and foam stability, making them promising for applications in soaps, detergents, and cosmetics.
Keywords
Surfactant; Sulphonation; Oreochromis niloticus; critical micelle concentration; surface tension
Downloads
References
1. S.O. Badmus, H.K. Amusa, T.A. Oyehan, T.A. Saleh, Environmental risks and toxicity of surfactants: overview of analysis, assessment, and remediation techniques, Environ. Sci. Pollut. Res. 28 (2021) 62085–62104. https://doi.org/10.1007/s11356-021-16483-w. [Google Scholar] [Crossref]
2. P. Johnson, A. Trybala, V. Starov, V.J. Pinfield, Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants, Adv. Colloid Interface Sci. 288 (2021). https://doi.org/10.1016/j.cis.2020.102340. [Google Scholar] [Crossref]
3. T. Rasheed, S. Shafi, M. Bilal, T. Hussain, F. Sher, K. Rizwan, Surfactants-based remediation as an effective approach for removal of environmental pollutants—A review, J. Mol. Liq. 318 (2020). https://doi.org/10.1016/j.molliq.2020.113960. [Google Scholar] [Crossref]
4. E.R. Sulistya Dewi, A.S. Nugroho, M. Ulfah, Water Quality in the Maintenance of Oreochromis niloticus through Environmentally Friendly Biofloc Technology, Mater. Sci. Eng. 835 (2020) 012008. https://doi.org/10.1088/1757-899X/835/1/012008. [Google Scholar] [Crossref]
5. A.S. Nugroho, E.R. Susatya Dewi, M.A. Dzakiy, The Effect of Decomposer Microorganism Additions on the Natural Hydroponic Technology (NHT) Systems of Pakchoy Growth, Mater. Sci. Eng. 835 (2020) 012046. https://doi.org/10.1088/1757-899X/835/1/012046. [Google Scholar] [Crossref]
6. H. Salminen, S. Aulbach, B.H. Leuenberger, C. Tedeschi, J. Weiss, Influence of surfactant composition on physical and oxidative stability of Quillaja saponin-stabilized lipid particles with encapsulated ω-3 fish oil, Colloids Surf. B Biointerfaces 122 (2014) 46-55. https://doi.org/10.1016/j.colsurfb.2014.06.045. [Google Scholar] [Crossref]
7. D. Mijaljica, F. Spada, I.P. Harrison, Skin Cleansing without or with Compromise: Soaps and Syndets, Molecules 27 (2022) 2010. https://doi.org/10.3390/molecules27062010. [Google Scholar] [Crossref]
8. A. Karnwal, S. Shrivastava, A.R.M. Said Al-Tawaha, G. Kumar, R. Singh, A. Kumar, Y. Yogita, T. Malik, Microbial Biosurfactant as an Alternate to Chemical Surfactants for Application in Cosmetics Industries in Personal and Skin Care Products: A Critical Review, BioMed Res. Int. (2023) 2375223. https://doi.org/10.1155/2023/2375223. [Google Scholar] [Crossref]
9. P. Meftahi, S. Samyn, S. A. Geravand, R. Khajavi, S. Alibkhshi, M. Bechelany, A. Barhoum,Nanocelluloses as skin biocompatible materials for skincare, cosmetics, and healthcare: Formulations, regulations, and emerging applications, Carbohydr. Polym. 278 (2022) 118956. https://doi.org/10.1016/j.carbpol.2021.118956. [Google Scholar] [Crossref]
10. S.H. Kuo, C.J. Shen, C.F. Shen, C.M. Cheng, Role of pH Value in Clinically Relevant Diagnosis, Diagnostics (Basel) 10 (2020) 107. https://doi.org/10.3390/diagnostics10020107. [Google Scholar] [Crossref]
11. Murphy, L. Atkin, T. Swanson, M. Tachi, Y.K. Tan, M.V. de Ceniga, D. Weir, R. Wolcott, Defying hard-to-heal wounds with an early antibiofilm intervention strategy: wound hygiene, J. Wound Care 29 Suppl 3b (2020) S1. https://doi.org/10.12968/jowc.2020.29.Sup3b.S1. [Google Scholar] [Crossref]
12. J. O'Brien, C. Parker, U. Bui, M. MacAndrew, J. Mitchell, K. Finlayson, What is the evidence on skin care for maintaining skin integrity and prevention of wounds? An integrative review, Wound Pract. Res. 32 (2024) 25-33. DOI 10.33235/wpr.32.1.25-33. [Google Scholar] [Crossref]
13. C.V. Ike, P.N. Ekemezie, I.M. Iloamaeke, Surfactant from the Oil of Clarias anguillaris (Mudfish): Synthesis and Characterization, IOSR J. Appl. Chem. 14 (2021) 22-29. [Google Scholar] [Crossref]
14. C.L. Mgbechidinma, X. Zhang, G. Wang, E.O. Atakpa, L. Jiang, C. Zhang, Advances in Biosurfactant Production from Marine Waste and Its Potential Application in the Marine Environment, Taylor Francis Group (2022) 32 pages. https://doi.org/10.1201/9781003307464 [Google Scholar] [Crossref]
15. P. Wojto, M. Szaniawska, L. Hołysz, R. Miller, A. Szcze, Surface Activity of Natural Surfactants Extracted from Sapindus mukorossi and Sapindus trifoliatus Soapnuts, Colloids Interfaces 5 (2021) 7. https://doi.org/10.3390/colloids5010007. [Google Scholar] [Crossref]
16. S. Neha, P. Nilanjan, O. Keka, D. Swapan, M. Ajay, Synthesis, Characterization, Physical and Thermodynamic Properties of a Novel Anionic Surfactant Derived from Sapindus laurifolius, RSC Adv. 8 (2018) 24485-24499. https://doi.org/10.1039/c8ra03888. [Google Scholar] [Crossref]
17. M.M. Mukhin, M.I. Rud, S.R. Derkach, V.V. Vasilevich, Y.A. Kuchina, M.A. Silin, The Petroleum Industry Surfactants Synthesized from Fish Oils, J. Dispersion Sci. Technol. 37 (2015) 1192-1199. https://doi.org/10.1080/01932691.2015.1088454 [Google Scholar] [Crossref]
18. S.H. Suseno, A.K. Rizkon, A.M. Jacoeb, D. Kamini, L. Listiana, Fish oil extraction as a by-product of Tilapia (Oreochromis sp.) fish processing with dry rendering method, IOP Conf. Ser.: Earth Environ. Sci. 679 (2021) 012009. https://doi.org/10.1088/1755-1315/679/1/012009. [Google Scholar] [Crossref]
19. X. Li, J. Cao, X. Bai, F. Zhang, Chemical composition and thermal properties of Tilapia oil extracted by different methods, Int. J. Food Prop. 21 (2018) 1575–1585. https://doi.org/10.1080/10942912.2018.150330. [Google Scholar] [Crossref]
20. E. Trewavas, Tilapiine Fishes of the Genera Sarotherodon, Oreochromis, and Danakilia, Br. Mus. Nat. Hist., London, 1983. https://www.biodiversitylibrary.org/bibliography/123198 [Google Scholar] [Crossref]
21. F.J. Mokolensang, M.H. Desy Mantiri, H. Manoppo, H. Pangkey, L. Manu, Utilization of tuna by-product and blood meal as a protein ingredient from animal waste product as a diet of Nile tilapia, Oreochromis niloticus, AACL Bioflux 14 (2021) 645-1650. [Google Scholar] [Crossref]
22. V. Endar, H. Pinandoyo, Y.S. Darmanto, N. Rismaningsih, S. Windarto, O.K. Radjasa, The effect of fermented duckweed (Lemna minor) in feed on growth and nutritional quality of tilapia (Oreochromis niloticus), Biodiversitas 21 (2020) 3350-3358. https://doi.org/10.13057/biodiv/d210759 [Google Scholar] [Crossref]
23. G.C. Canonico, A. Arthington, J.K. McCrary, M.L. Thieme, The effects of introduced tilapias on native biodiversity, Aquat. Conserv. Mar. Freshw. Ecosyst. 15 (2005) 463-483. https://doi.org/10.1002/aqc.699 [Google Scholar] [Crossref]
24. N. Chairany, L.A. Sari, S. Arshad, Analysis of high protein feed on the maintenance of tilapia (Oreochromis niloticus) broodstock in brackishwater culture, IOP Conf. Ser.: Earth Environ. Sci. 1273 (2023) 012089. https://doi.org/10.1088/1755-1315/1273/1/012089. [Google Scholar] [Crossref]
25. B.N. Effiong, J.O. Fakunle, Fatty acid composition of catfish (Clarias gariepinus) viscera oil, in: 25th Annual Conference of the Fisheries Society of Nigeria (FISON), Lagos, Nigeria, 2010, pp. 516-518. [Google Scholar] [Crossref]
26. N. Saxena, N. Pal, K. Ojha, S. Dey, A. Mandal, Synthesis, characterization, physical and thermodynamic properties of a novel anionic surfactant derived from Sapindus laurifolius, RSC Adv. 8 (2018) 24485–24499. https://doi.org/10.1039/c8ra03888. [Google Scholar] [Crossref]
27. IUPAC, Standard methods for analysis of oils, fats, and derivatives, Blackwell Scientific, London, 1992. [Google Scholar] [Crossref]
28. American Standard Test Methods, ASTM D445, Standard test method for kinematic viscosity of transparent and opaque liquids and calculation of dynamic viscosity, ASTM Int., West Conshohocken, 2006. https://www.astm.org. [Google Scholar] [Crossref]
29. ISO 3104, Petroleum products – transparent and opaque liquids – determination of kinematic viscosity and calculation of dynamic viscosity, Int. Stand. Organ., Geneva, 1997. [Google Scholar] [Crossref]
30. Association of Official Analytical Chemists, Official methods and recommended practices of the America Oil Chemist Society, 4th ed., Amer. Oil Chem. Soc., Champaign, Illinois, 1992 [Google Scholar] [Crossref]
31. C.N. Nchuma, E.I. Obeagu, Proximate and physicochemical analysis of oil obtained from two fish species (fresh and frozen), Int. J. Adv. Res. Biol. Sci. 5 (2018) 167–177. http://dx.doi.org/10.22192/ijarbs.2018.05.04.017 [Google Scholar] [Crossref]
32. A Eivazihollagh, I Svanedal, H Edlund, M Norgren. On chelating surfactants: Molecular perspectives and application prospects. Jour nal of Molecular Liquids. 2019;278:688–705. doi:10.1016/j.molliq.2019.01.076. [Google Scholar] [Crossref]
33. T I Yunusov, L F Davletshina, L A Magadova, M A Silin. Study of chelating agent–surfactant interactions on the interphase as possibly useful for the well stimulation. Energies. 2023;16(4):1679. doi:10.3390/en16041679 [Google Scholar] [Crossref]
34. American Standard Test Methods, ASTM D2281-10, Standard test method for evaluation of wetting agents by the skein test, ASTM Int., West Conshohocken, 2010. https://store.astm.org/d2281-10.html [Google Scholar] [Crossref]
35. R. Farn, Chemistry and Technology of Surfactants, Blackwell Publishing Ltd, United Kingdom, 2006: 34-78. [Google Scholar] [Crossref]
36. American Standard Test Methods, ASTM D1173, Standard test method for foaming properties of surface-active agents, ASTM Int., West Conshohocken, 2007. https://store.astm.org/d1173-07r15.html [Google Scholar] [Crossref]
37. Y. Saito, T. Sato, I. Anazawa, Effects of molecular weight distribution of non-ionic surfactants on stability of O/W emulsions, J. Am. Oil Chem. Soc. 67 (1990) 145-148. https://doi.org/10.1007/BF02539614 [Google Scholar] [Crossref]
38. E. Romanova, T. Shlenkina, B. Романов, V. Lyubomirova, E. Fazilov, Evaluation of the content of polyunsaturated fatty acids in artemia at different stages of ontogenesis, EDP Sci. 376 (2023) 02025-02025. https://doi.org/10.1051/e3sconf/202337602025. [Google Scholar] [Crossref]
39. R.E. Wrolstad, E.A. Decker, S.J. Schwartz, Handbook of Food Analytical Chemistry: Water, Proteins, Enzymes, Lipids, and Carbohydrates, Wiley, Weinheim, 2005: 305-308. ISBN: 978-0-471-66378-2 [Google Scholar] [Crossref]
40. V.J. Barthet, V. Gordon, J.K. Daun, Evaluation of a colorimetric method for measuring the content of FFA in marine and vegetable oils, Food Chem. 111 (2008) 1064-1068. https://doi.org/10.1016/j.foodchem.2008.05.026 [Google Scholar] [Crossref]
41. International Fish Oil Standard (IFOS), Fish Oil Purity Standards, retrieved from http://www.Omegavia.com/best, accessed on 15th June 2024. [Google Scholar] [Crossref]
42. FAO, The State of Food and Agriculture, Food and Agriculture Organization Publication, Rome, Italy, 2008: 14-16. https://doi.org/10.4060/cd2616en [Google Scholar] [Crossref]
43. F.A.S. Mota, J.T. Costa Filho, G.A. Barreto, The Nile tilapia viscera oil extraction for biodiesel production in Brazil: An economic analysis, Renew. Sustain. Energy Rev. 108 (2019) 1–10. https://doi.org/10.1016/j.rser.2019.03.035. [Google Scholar] [Crossref]
44. M.L. Menegazzo, M.E. Petenuci, G.G. Fonseca, Production and characterization of crude and refined oils obtained from the co-products of Nile tilapia and hybrid sorubim processing, Food Chem. 157 (2014) 100–104. https://doi.org/10.1016/j.foodchem.2014.01.1. [Google Scholar] [Crossref]
45. Ugoala, G.I. Ndukwe, T.O. Audu, Comparison of fatty acids profile of some freshwater and marine fishes, Internet J. Food Saf. 10 (2008) 9–17. [Google Scholar] [Crossref]
46. B.N. Effiong, J.O. Fakunle, Fatty acid composition of catfish (Clarias gariepinus) viscera oil, J. Fish Aquat. Sci. 8 (2013) 299-301. https://doi.org/10.3923/jfas.2013.299.301 [Google Scholar] [Crossref]
47. A. Pel Fatty acids: a versatile and sustainable source of raw materials for the surfactants industry. Oléagineux Corps Gras Lipides. 2001 Mar-Apr;8(2):145-51. https://doi.org/10.1051/ocl.2001.0145 [Google Scholar] [Crossref]
48. V.M. Dembitsky , D.V. Kuklev Acetylenic epoxy fatty acids. In:D.G. Hayes , editor. Fatty acids–based surfactants and their uses. In: M. U. Ahmad, editor. Fatty acids. Champaign, IL: AOCS Press; 2017. p. 121-46. doi:10.1016/b978-0-12-809521-8.00011-8. [Google Scholar] [Crossref]
49. M. Svensson Surfactants based on natural fatty acids. In: Kjellin M, Johansson I, editors. Surfactants from Renewable Resources. 1st ed. Hoboken, NJ: John Wiley & Sons; 2010. p. 1-18. https://doi.org/10.1002/9780470686607.ch1 [Google Scholar] [Crossref]
50. H. Cheng, J. Mei, J. Xie, Revealing the evolution of lipid extracts from tilapia (Oreochromis mossambicus) during cold storage: Based on lipid metabolism analysis via GC-Q-MS and characterization of lipid oxidation, LWT-Food Sci. Technol. 201 (2024) 116268. https://doi.org/10.1016/j.lwt.2024.116268. [Google Scholar] [Crossref]
51. M.H. Abo-Raya, K.M. Alshehri, R.F.A. Abdelhameed, Z.I. Elbialy, S.S. Elhady, R.A. Mohamed, Assessment of growth-related parameters and immune-biochemical profile of Nile tilapia (Oreochromis niloticus) fed dietary Ulva fasciata extract, Aquacult. Res. 52 (2021) 3233–3246. https://doi.org/10.1111/are.15169. [Google Scholar] [Crossref]
52. M.J. Rosen, J.T. Kunjappu, Surfactants and Interfacial Phenomena, 4th ed., John Wiley & Sons, Hoboken, NJ, 2012. https://doi.org/10.1002/9781118228920 [Google Scholar] [Crossref]
53. D. Myers, Surfaces, Interfaces, and Colloids: Principles and Applications, 2nd ed., John Wiley & Sons, 2005. [Google Scholar] [Crossref]
54. A.T. Florence, D. Attwood. Physicochemical Principles of Pharmacy. 5th ed. London, UK: Pharmaceutical Press; 2011. [Google Scholar] [Crossref]
55. T. Banipal, H. Kaur, P.K. Banipal, A.K. Sood. Effect of Head Groups, Temperature, and Polymer Concentration on Surfactant Polymer Interactions. J Surfactants Deterg. 2014;17(8):1181-91. doi:10.1007/s11743-014-1633-y1. [Google Scholar] [Crossref]
56. A. Rahman, J. Eastoe. The effects of surfactant and oil chemical structures on self-assembly in a polar media. Soft Matter. 2022;18:9133-52. doi:10.1039/D2SM00827K2. [Google Scholar] [Crossref]
57. H. Wang, W. Guo, C. Zheng, D. Wang, H. Zhan. Effect of Temperature on Foaming Ability and Foam Stability of Typical Surfactants Used for Foaming Agent. J Surfactants Deterg. 2017;20(3):615-22. doi:10.1007/s11743-017-1953-93. [Google Scholar] [Crossref]
58. N.A. Negm, Y.M. Elkholy, F.M. Ghuiba, M.K. Zahran, S.A. Mahmoud, S.M. Tawfik. Benzothiazol-3-ium cationic Schiff base surfactants: synthesis, surface activity and antimicrobial applications, pathogenic and sulphur reducing bacteria in oil fields. J Dispersion Sci Technol. 2011;32:512-8. https://doi.org/10.1080/01932691003756902 [Google Scholar] [Crossref]
59. Y. Jin, S. Tian, J. Guo, X. Ren, X. Li, S. Gao. Synthesis, Characterization and Exploratory Application of Anionic Surfactant Fatty Acid Methyl Ester Sulfonate from Waste Cooking Oil. J Surfactants Deterg. 2016;19(3):34-9. https://doi.org/10.1007/s11743-016-1813-z [Google Scholar] [Crossref]
60. Z. Kauffer, P. May. Sodium lauryl sulfate: The main cleaning agent in soap and detergent. Molecule of the Month. March 2010. Available from: https://www.chm.bris.ac.uk/motm/SLS/Sodium%20lauryl%20sulfate%20-%20Molecule%20of%20the%20Month%20-%20March%202010.pdf. Retrieved on 11th March 2025. [Google Scholar] [Crossref]
61. M. Fujiwara, M. Miyake, Y. Abe, Colloidal properties of alpha-sulfonated fatty acid methyl esters and their applicability in hard water. Colloid Polym. Sci., (1993) 271, 780–785. https://doi.org/10.1007/BF00660095 [Google Scholar] [Crossref]
62. R.D. Prabhakara, R.N. Rati. Synthesis, Surface Properties and Effect of an Amino Acid Head Group of 11‐(2‐Methoxy‐4‐vinylphenoxy) undecanoicacid‐Based Anionic Surfactants. J Surfactants Deterg. 2016;19(6):1095-1351.https://doi.org/10.1007/s11743-016-1869-9 [Google Scholar] [Crossref]
63. A.A. Obuebite, O.O. Okwonna, W.I. Eke, O. Akaranta. Orange Mesocarp Extract as a Natural Surfactant: Impact on Fluid−Fluid and Fluid−Rock Interactions during Chemical Flooding. ACS Omega. 2024;9:4263−76. https://doi.org/10.1021/acsomega.3c04651 [Google Scholar] [Crossref]
64. X. Wei, J. Li, X. Geng, D. Niu, Z. Wei, C. Wang, et al. Synthesis, Surface Activity, Emulsifiability and Bactericidal Performance of Zwitterionic Tetrameric Surfactants. Molecules. 2024;29(18):4286. doi:10.3390/molecules29184286. [Google Scholar] [Crossref]
65. K.L. Mittal. Surfactants in Solution, in Handbook of Detergents, Part E: Applications. CRC Press; 2017. https://doi.org/10.1201/9781420018165 [Google Scholar] [Crossref]
66. Stepan Surfactant Company Annual Report. A performance chart of products. Northfield, Illinois; 2013. Available from: http://www.annualreports.com/company/stepan-company. Accessed 2019 Aug 2. [Google Scholar] [Crossref]
67. A.M. El-Ghaffar, M. Sherif, A.T. El-Habab. Synthesis, Characterization, and Evaluation of Ethoxylated Lauryl-Myrisityl Alcohol Nonionic Surfactants as Wetting Agents, Anti-Foamers, and Minimum Film Forming Temperature Reducers in Emulsion Polymer Lattices. J Surfactants Deterg. 2016;20(1):117-28. https://doi.org/10.1007/s11743-016-1898-4 [Google Scholar] [Crossref]
68. P.K. Pandari, R. Peketi, K. Sanjit. Sulfosuccination of Methyl Ricinoleate and Methyl 12-Hydroxy Stearate Derived from Renewable Castor Oil and Evaluation of Their Surface Properties. J Surfactants Deterg. 2016;19(3):447-54. https://doi.org/10.1007/s11743-016-1804-0 [Google Scholar] [Crossref]
69. Okafor J. Environmental impact of palm oil production [Internet]. Trvst. 2023 Jun 16 [updated 2024 Dec 7; cited 2025 Mar 7]. Available from: https://www.trvst.world/environment/environmental-impact-of-palm-oil-production/ [Google Scholar] [Crossref]
70. Ritchie H. Palm oil [Internet]. Our World in Data; 2021 [cited 2025 Mar 7]. Available from: https://ourworldindata.org/palm-oil [Google Scholar] [Crossref]
71. American Standard Test Methods. ASTM D2281-10 Standard Test Method for Evaluation of Wetting Agents by the Skein Test. ASTM International, West Conshohocken, 2010. Available from: https://www.astm.org/d2281-10.html. [Google Scholar] [Crossref]
72. M.J. Rosen, J.T. Kunjappu. Surfactants and Interfacial Phenomena. 4th ed. Wiley; 2012. ISBN: 978-0470505425. https://doi.org/10.1002/9781118228920 [Google Scholar] [Crossref]
73. J. Eastoe, J.S. Dalton. Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface. Adv Colloid Interface Sci. 2000;85(2-3):103-44. doi:10.1016/S0001-8686(99)00016-4. [Google Scholar] [Crossref]
74. L. Jangid, S. Dey, D. Joshi, N. Saxena, K. Ojha, A. Mandal. Exploring interfacial properties and thermodynamic parameters of synthesized biodegradable surfactants from Brassica Juncea and their emulsification characteristics. J Mol Liq. 2024;408:125326. doi:10.1016/j.molliq.2024.125326. [Google Scholar] [Crossref]
75. Z. Wang, Y. Chen, F. Zhang, S. Lin. Significance of surface excess concentration in the kinetics of surfactant-induced pore wetting in membrane distillation. Desalination. 2019;450:46–53. doi:10.1016/j.desal.2018.10.02. [Google Scholar] [Crossref]
76. J.N. Israelachvili. Intermolecular and Surface Forces. 3rd ed. Academic Press; 2011. ISBN: 978-0123919274. [Google Scholar] [Crossref]
77. Y.M. Tricot. Surfactants: Static and Dynamic Surface Tension. In: Kistler SF, Schweizer PM, editors. Liquid Film Coating. Dordrecht: Springer; 1997. doi:10.1007/978-94-011-5342-3_4. [Google Scholar] [Crossref]
78. H.J. Butt, K. Graf, M. Kappl. Physics and Chemistry of Interfaces. Weinheim, Germany: Wiley-VCH; 2003. DOI:10.1002/9783527629411 [Google Scholar] [Crossref]
79. A.W. Adamson, A.P. Gast. Physical Chemistry of Surfaces. 6th ed. New York, NY: Wiley-Interscience; 1997. ISBN: 978-0-471-14873-9 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Green Synthesis of Cobalt Oxide/Gold (Coo/Au) Bimetallic Nanoparticles Using Sinapinic Acid: A Comprehensive Study
- Advances in Solar Cell Technologies: A Comprehensive Review of Material Synthesis, Structural Properties, Efficiency and Diverse Applications
- Thermal Decomposition of Co-Fe-Cr-Citrate Complex Via Structural and Spectral Study
- Green Synthesis of Robust Metal-Organic Frameworks: A Sustainable Approach for Advanced Applications
- Quantum Confinement and Trap-State Emission in Cds/Zns Nanoparticles Stabilized within A PVA Matrix