Thermal Decomposition of Co-Fe-Cr-Citrate Complex Via Structural and Spectral Study
Authors
Department of Chemistry, R. P. Gogate College of Art’s & Science and R. V. Jogalekar College of Commerce (Autonomous), Ratnagiri, Maharashtra (India)
Article Information
DOI: 10.51244/IJRSI.2025.120800278
Subject Category: Chemistry
Volume/Issue: 12/9 | Page No: 3077-3081
Publication Timeline
Submitted: 2025-09-22
Accepted: 2025-09-28
Published: 2025-10-04
Abstract
A Citrate gel precursor method was employed to prepare CoFeCrO4. The citrate complex of cobalt-iron-chromium was investigated with the help of thermoanalytical technique. Its thermal decomposition study in air by subsequent analysis by FT-IR and XRD were studied to predict the stepwise reaction mechanism at various temperature ranges to get single phase pure spinel compound.
Keywords
Citrate precursor; TG-DTA; FT-IR; Single phase; XRD
Downloads
References
1. Maria Arshad, Muhammad Khalid, Muhammad Younas, Zaheer Uddin, Wahab Ullah, Imed Boukhris, M.G.B. Ashiq, Farhan Aziz, Materials Characterization, Volume 215, September 2024, 11421. [Google Scholar] [Crossref]
2. Chetna C. Chauhan, Tanuj M. Gupta, Reshma A. Nandotaria, Abhishek A. Gor, Charanjeet Singh Sandhu, Kanti R. Jotania, Rajshree B. Jotania, Ceramics International, Volume 47, Issue 19, 1 October 2021, Pages 27441-27452. [Google Scholar] [Crossref]
3. Swarupamayee Nayak, Pratiksha Agnihotri, Jagadis Prasad Nayak, Charul Joshi, Radheshyam Rai, [Google Scholar] [Crossref]
4. Current Applied Physics, Volume 73, May 2025, Pages 49-76 [Google Scholar] [Crossref]
5. G. Blasse, Philips Res. Rep. Suppl. 3 (1964) 96. [Google Scholar] [Crossref]
6. M. A. Gabal, J. Materials Research and Technology, 15, (2021), 5841. [Google Scholar] [Crossref]
7. J. B. Goodenough, Prog. Solid State Chem. 5 (1971) 145. [Google Scholar] [Crossref]
8. P. P. Hankare, U. B. Sankpal, R. P. Patil, I. S. Mulla, R. Sasikala, A. K. Tripathi, K. M. Garadkar, J. Alloys Compounds 496, (2010) 256. [Google Scholar] [Crossref]
9. P. P. Hankare, U. B. Sankpal, R. P. Patil, K.M. Garadkar, A. V. Jadhav, B.K. Chougule, J. Magn. Magn. Mater.323, (2011) 389. [Google Scholar] [Crossref]
10. A. Chatarjee, D. Das, S. K. Pradhan, D. Chakravorty, J. Magn. Magn. Mater. 127 (1993) 443. [Google Scholar] [Crossref]
11. J. P. Wang, Mater. Sci. Eng. B 127 (2006) 81. [Google Scholar] [Crossref]
12. P. P. Hankare, U.B. Sankpal, R.P. Patil, P.D. Lokhande, R. Sasikala, Mater. Sci. Eng. B: Solid-State Mater. Adv. Tech., 176, (2011) 103. [Google Scholar] [Crossref]
13. B. L. Shinde, U. M. Mandle, A. M. Pachpinde, K. S. Lohar, J. Thermal Analysis & Calorimetry 147, 4 (2022), 2947 [Google Scholar] [Crossref]
14. C. V. Gopal Reddy, S. V. Manorama, V. J. Rao, J. Mater. Sci. Lett. 19 (2000) 775. [Google Scholar] [Crossref]
15. P. Y. Lee, K. Ishizaka, H. Suemastu, W. Jiang, K. Yatsui, J. Nanaoparticles Res. 8 (2006) 29. [Google Scholar] [Crossref]
16. W. J. Schuele and V. D. Dectscreek, Fine Particle Ferrites, in W. E. Kuhn, H. Lamprey and C. Sheer (Eds.), Ultrafine Particles, Wiley, New York, 1963, 218. [Google Scholar] [Crossref]
17. P. Ravindranathan and K. C. Patil, Am. Ceram. Soc. Bull. 66(4) (1987) 688. [Google Scholar] [Crossref]
18. N. S. Gajbhiye, U. Bhattacharya, V. S. Darshane, Thermochimica Acta. 264 (1995) 219-230. [Google Scholar] [Crossref]
19. M. A. Gabal, Journal of Materials Research and Technology, Volume 15, November–December 2021, Pages 5841-5848. [Google Scholar] [Crossref]
20. Pratik A. Asogekar, V. M. S. Verenkar Ceramics International Volume 45, Issue 17, Part A, 1 December 2019, Pages 21793-21803. [Google Scholar] [Crossref]
21. S. G. Gawas, V. M. S. Verenkar, Thermochimica Acta Volume 605, 10 April 2015, Pages 16-21. [Google Scholar] [Crossref]
22. V. K. Sankaranarayana and N. S. Gajbhiye, Thermochimica Acta 153 (1989) 337-348. [Google Scholar] [Crossref]