Notice: Our website is undergoing maintenance, which may cause brief technical glitches. We’ll be back soon with smoother performance. Thank you for your understanding.
Days
Hours
Minutes
Seconds
Submission Deadline
Days
Hours
Minutes
Seconds
Submission Deadline

Some Results on a Class of Harmonic Univalent Functions Defined by Generalised Derivative Operator   

  • Entisar El-Yagubi
  • Samira Ziada
  • -376
  • Oct 3, 2024
  • Mathematics

Some Results on a Class of Harmonic Univalent Functions Defined by Generalised Derivative Operator   

Entisar El-Yagubi*, Samira Ziada

Mathematical Department, Gharyan University, Faculty of Science, Gharyan, Libya 

*Corresponding Author

DOI: https://doi.org/10.51244/IJRSI.2024.1109033

Received: 28 August 2024; Accepted: 18 September 2024; Published: 03 October 2024

ABSTRACT

Harmonic function is one of an important branches of complex analysis. The first study of complex – valued, harmonic mappings defined on a domain ꓓ ⊂ C was given by Clunie and Sheil-Small [1]. Harmonic functions have been studied by different researchers such as Silverman [6]. In the present paper, a new class of harmonic univalent functions will be introduced. Various properties of functions belong to this class which include coefficient bounds, growth bounds, a closure property, extreme points, neighborhood and a convex combination will be obtained.

Keywords: Univalent functions, harmonic functions, derivative operator, distortion inequalities.

INTRODUCTION

Let \( U = \{ z \in \mathbb{C} : |z| < 1 \} \) be the open unit disc, and let \( S_H \) denote the class of all complex-valued, harmonic, sense-preserving, univalent functions \( f \) in \( U \), normalized by \( f(0) = 0 \) and \( f'(0) – 1 = 0 \). Each function \( f \in S_H \) is expressed as \[ f(z) = h(z) + \overline{g(z)}, \] where \( h \) and \( g \) belong to the linear space \( H(U) \) of all analytic functions on \( U \), taking the form \[ h(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad g(z) = \sum_{n=1}^{\infty} b_n z^n. \tag{1.1} \] Thus, for each \( f \in S_H \), we have \[ f(z) = z + \sum_{n=2}^{\infty} a_n z^n + \overline{\sum_{n=1}^{\infty} b_n z^n}, \quad z \in U. \tag{1.2} \] Clunie and Sheil-Small [1] proved that \( S_H \) is not compact, and the necessary and sufficient condition for \( f \) to be locally univalent and sense-preserving in any simply connected domain \( U \) is that \( |h'(z)| > |g'(z)| \).

Darus and Ibrahim [2] introduced the generalized derivative operator, denoted by \( D^{k}_{\delta, \beta, \lambda} f(z) \) for \( f \in A \), as follows:
\[
D^{k}_{\delta, \beta, \lambda} f(z) = z + \sum_{n=2}^{\infty} [\beta(n-1)(\lambda – \delta) + 1]^k a_n z^n, \tag{1.3}
\]
where \( \delta \geq 0 \), \( \beta > 0 \), \( \lambda > 0 \), \( \delta \neq \lambda \), and \( k \in \mathbb{N}_0 = \{0, 1, 2, \dots \} \).

In this paper, the operator \( D^{k}_{\delta, \beta, \lambda} f(z) \) will be introduced for \( f = h + \overline{g} \) where \( h \) and \( g \) are given by (1.1), and it will be expressed as
\[
D^{k}_{\delta, \beta, \lambda} f(z) = D^{k}_{\delta, \beta, \lambda} h(z) + (-1)^k \overline{D^{k}_{\delta, \beta, \lambda} g(z)}, \quad z \in U, \tag{1.4}
\]
where
\[
D^{k}_{\delta, \beta, \lambda} h(z) = z + \sum_{n=2}^{\infty} [\beta(n-1)(\lambda – \delta) + 1]^k a_n z^n,
\]
\[
D^{k}_{\delta, \beta, \lambda} g(z) = \sum_{n=1}^{\infty} [\beta(n-1)(\lambda – \delta) + 1]^k b_n z^n. \tag{1.5}
\]

For \( \delta \geq 0 \), \( \beta > 0 \), \( \lambda > 0 \), \( \delta \neq \lambda \), and \( k \in \mathbb{N}_0 \), we further denote by \( \overline{S_H} \), the subclass of \( S_H \) consisting of harmonic functions of the form
\[
f_k = h + \overline{g_k}, \tag{1.6}
\]
where
\[
h(z) = z – \sum_{n=2}^{\infty} |a_n| z^n,
\]
\[
g_k(z) = (-1)^k \sum_{n=1}^{\infty} |b_n| z^n, \quad z \in U, \quad |b_1| < 1.
\]

A class of harmonic univalent functions is introduced as follows:

Definition 1.1: The function \( f = h + \overline{g} \) defined by (1.2) is in the class \( S_H^k(\delta, \beta, \lambda, \alpha) \) if
\[
\Re\left(\frac{D^{k+1}_{\delta, \beta, \lambda} f(z)}{D^k_{\delta, \beta, \lambda} f(z)}\right) \geq \alpha, \tag{1.7}
\]
where \( 0 \leq \alpha < 1 \), \( \delta \geq 0 \), \( \beta > 0 \), \( \lambda > 0 \), \( \delta \neq \lambda \), and \( k \in \mathbb{N}_0 \).

Note that the class \( \overline{S_H}^0(0, 0, 0, \alpha) \equiv S_H(\alpha) \) is the class of sense-preserving harmonic univalent functions \( f \), which are starlike of order \( \alpha \) in \( U \), as studied by Jahangiri [3]. The class \( \overline{S_H}^k(0, 1, 1, \alpha) \) is the class of Salagean-type harmonic univalent functions introduced by Jahangiri et al. [4].

We further denote by \( \overline{S_H}^k(\delta, \beta, \lambda, \alpha) \), the subclass of \( S_H^k(\delta, \beta, \lambda, \alpha) \), where \( \overline{S_H}^k(\delta, \beta, \lambda, \alpha) = S_H^k(\delta, \beta, \lambda, \alpha) \cap \overline{S_H} \).

MAIN RESULTS

In the next theorem, a sufficient coefficient bound related to the class \( S_H^k (\delta, \beta, \lambda, \alpha) \) shall be obtained.

Theorem 2.1. Let \( f = h + \overline{g} \) be given by (1.2). Furthermore, let

\[
\sum_{n=2}^{\infty} \Omega^k [\Omega – \alpha] |a_n| + \sum_{n=1}^{\infty} \Omega^k [\Omega + \alpha] |b_n| \leq 1 – \alpha \tag{2.1}
\]

where

\[
\Omega^k = [\beta(n-1)(\lambda – \delta) + 1]^k, \quad \Omega = [\beta(n-1)(\lambda – \delta) + 1],
\]
\[
a_1 = 1, \quad 0 \leq \alpha < 1, \quad \delta \geq 0, \quad \beta > 0, \quad \lambda > 0, \quad \delta \neq \lambda, \quad k \in \mathbb{N}_0,
\]

then \( f \in S_H^k (\delta, \beta, \lambda, \alpha) \).

Proof. According to (1.7), we have

\[
\Re \left( \frac{D^{k+1}_{\delta, \beta, \lambda} f(z)}{D^k_{\delta, \beta, \lambda} f(z)} \right) \geq \alpha.
\]

This is equivalent to \( \Re \left( \frac{A(z)}{B(z)} \right) > \alpha \), where \( A(z) = D^{k+1}_{\delta, \beta, \lambda} f(z) \) and \( B(z) = D^k_{\delta, \beta, \lambda} f(z) \).

Using the fact that \( \Re(w) > \alpha \) if \( |1 – \alpha + w| \geq |1 + \alpha – w| \), it suffices to show that

\[
|A(z) + (1 – \alpha) B(z)| \geq |A(z) – (1 + \alpha) B(z)|.
\]

Substituting values of \( A(z) \) and \( B(z) \), and with simple calculations, we get

\[
|D^{k+1}_{\delta, \beta, \lambda} f(z) + (1 – \alpha) D^k_{\delta, \beta, \lambda} f(z)| \geq |D^{k+1}_{\delta, \beta, \lambda} f(z) – (1 + \alpha) D^k_{\delta, \beta, \lambda} f(z)|.
\]

\[
|z + \sum_{n=2}^{\infty} \Omega^{k+1} a_n z^n + (-1)^{k+1} \sum_{n=1}^{\infty} \Omega^{k+1} \overline{b_n} \overline{z^n} + (1 – \alpha) \left[ z + \sum_{n=2}^{\infty} \Omega^k a_n z^n + (-1)^k \sum_{n=1}^{\infty} \Omega^k \overline{b_n} \overline{z^n} \right]|
\]

\[
\geq |z + \sum_{n=2}^{\infty} \Omega^{k+1} a_n z^n + (-1)^{k+1} \sum_{n=1}^{\infty} \Omega^{k+1} \overline{b_n} \overline{z^n} – (1 + \alpha) \left[ z + \sum_{n=2}^{\infty} \Omega^k a_n z^n + (-1)^k \sum_{n=1}^{\infty} \Omega^k \overline{b_n} \overline{z^n} \right]|.
\]

\[
|(2 – \alpha)z + \sum_{n=2}^{\infty} \Omega^k [\Omega + (1 – \alpha)] a_n z^n – (-1)^k \sum_{n=1}^{\infty} \Omega^k [\Omega – (1 – \alpha)] \overline{b_n} \overline{z^n}|
\]

\[
– |-\alpha z + \sum_{n=2}^{\infty} \Omega^k [\Omega – (1 + \alpha)] a_n z^n + (-1)^k \sum_{n=1}^{\infty} \Omega^k [-\Omega – (1 + \alpha)] \overline{b_n} \overline{z^n}|
\]

\[
\geq 2(1 – \alpha) |z| – \sum_{n=2}^{\infty} \Omega^k [2\Omega – 2\alpha] |a_n| |z|^n – \sum_{n=1}^{\infty} \Omega^k [2\Omega + 2\alpha] |\overline{b_n}| |\overline{z}|^n
\]

\[
\geq 2(1 – \alpha) |z| \left\{ 1 – \sum_{n=2}^{\infty} \Omega^k \left[ \frac{\Omega – \alpha}{1 – \alpha} \right] |a_n| |z|^{n-1} – \sum_{n=1}^{\infty} \Omega^k \left[ \frac{\Omega + \alpha}{1 – \alpha} \right] |\overline{b_n}| |\overline{z}|^{n-1} \right\}
\]

\[
\geq 0
\]

by assumption. Hence, the proof is complete.

Theorem 2.2. Let \( f_k = h + \overline{g_k} \) be given by (1.6). Then \( f_k \in \overline{S_H}^k (\delta, \beta, \lambda, \alpha) \) if and only if

\[
\sum_{n=2}^{\infty} \Omega^k [\Omega – \alpha] |a_n| + \sum_{n=1}^{\infty} \Omega^k [\Omega + \alpha] |b_n| \leq 1 – \alpha,
\tag{2.2}
\]

where

\[
\Omega^k = [\beta(n-1)(\lambda – \delta) + 1]^k, \quad \Omega = [\beta(n-1)(\lambda – \delta) + 1],
\]

\( a_1 = 1, \ 0 \leq \alpha < 1, \ \delta \geq 0, \ \beta > 0, \ \lambda > 0, \ \delta \neq \lambda, \ k \in \mathbb{N}_0 \).

Proof. Since \( \overline{S_H}^k (\delta, \beta, \lambda, \alpha) \subseteq S_H^k (\delta, \beta, \lambda, \alpha) \), we only need to prove the “only if” part of the theorem. Note that a necessary and sufficient condition for \( f_k = h + \overline{g_k} \) given by (1.6) to be in \( \overline{S_H}^k (\delta, \beta, \lambda, \alpha) \) is that

\[
\Re \left\{ \frac{D_{\delta, \beta, \lambda}^{k+1} f(z)}{D_{\delta, \beta, \lambda}^k f(z)} \right\} \geq \alpha,
\]

which is equivalent to

\[
\Re \left\{ \frac{D_{\delta, \beta, \lambda}^{k+1} f_k(z) – \alpha D_{\delta, \beta, \lambda}^k f_k(z)}{D_{\delta, \beta, \lambda}^k f_k(z)} \right\} \geq 0.
\]

This is further equivalent to:

\[
\Re \left\{ \frac{(1 – \alpha)z – \sum_{n=2}^{\infty} \Omega^k [\Omega – \alpha] a_n z^n – (-1)^k \sum_{n=1}^{\infty} \Omega^k [\Omega + \alpha] b_n \overline{z^n}}{z – \sum_{n=2}^{\infty} \Omega^k a_n z^n + (-1)^k \sum_{n=1}^{\infty} \Omega^k b_n \overline{z^n}} \right\} \geq 0.
\]

The above condition must hold for all values of \( z \), where \( |z| = r < 1 \). Choosing \( z \) on the positive real axis where \( 0 \leq z = r < 1 \), we have:

\[
\frac{(1 – \alpha) – \sum_{n=2}^{\infty} \Omega^k [\Omega – \alpha] a_n r^{n-1} – (-1)^k \sum_{n=1}^{\infty} \Omega^k [\Omega + \alpha] b_n \overline{r^{n-1}}}{1 – \sum_{n=2}^{\infty} \Omega^k a_n r^{n-1} + (-1)^k \sum_{n=1}^{\infty} \Omega^k b_n \overline{r^{n-1}}} \geq 0.
\tag{2.3}
\]

If the condition (2.2) does not hold, then the numerator in (2.3) is negative for \( r \) sufficiently close to 1. Thus there exists \( z_0 = r_0 \) in \( (0,1) \) for which the quotient in (2.3) is negative. This contradicts the required condition for \( f_k \in \overline{S_H}^k (\delta, \beta, \lambda, \alpha) \), and so the proof is complete.

In this section, growth bounds for \( f_k \in \overline{S_H}^k (\delta, \beta, \lambda, \alpha) \) are obtained.

Theorem 2.3. Let \( f_k \in \overline{S_H}^k (\delta, \beta, \lambda, \alpha) \), then for \( |z| = r < 1 \), we have:

\[
|f_k(z)| \leq (1 + |b_1|)r + \frac{1}{\Omega^k} \left( \frac{1 – \alpha}{\Omega – \alpha} – \frac{\Omega^k (\Omega + \alpha)}{\Omega – \alpha} |b_1| \right) r^2,
\]

\[
|f_k(z)| \geq (1 – |b_1|)r – \frac{1}{\Omega^k} \left( \frac{1 – \alpha}{\Omega – \alpha} – \frac{\Omega^k (\Omega + \alpha)}{\Omega – \alpha} |b_1| \right) r^2,
\]

where \( \Omega^k = [\beta(\lambda – \delta) + 1]^k \), \( \Omega = [\beta(\lambda – \delta) + 1] \), and \( a_1 = 1, \ 0 \leq \alpha < 1, \ \delta \geq 0, \ \beta > 0, \ \lambda > 0, \ \delta \neq \lambda, \ k \in \mathbb{N}_0 \).

Proof. The first inequality will be proved. The argument for the second inequality is similar and will be omitted. Let \( f_k \in \overline{(S_H)}^k (\delta, \beta, \lambda, \alpha) \). Taking the absolute value of \( f_k \), we obtain

\[
|f_k(z)| \leq (1 + |b_1|)r + \sum_{n=2}^{\infty} (|a_n| + |b_n|) r^n
\]

\[
\leq (1 + |b_1|)r + \sum_{n=2}^{\infty} (|a_n| + |b_n|) r^2
\]

\[
\leq (1 + |b_1|)r + \frac{(1 – \alpha)}{(\Omega^k (\Omega – \alpha))} \sum_{n=2}^{\infty} \left( \frac{(\Omega^k (\Omega – \alpha))}{(1 – \alpha)} (|a_n| + |b_n|) \right) r^2
\]

\[
\leq (1 + |b_1|)r + \frac{(1 – \alpha)}{(\Omega^k (\Omega – \alpha))} \left( 1 – \frac{(\Omega^k (\Omega + \alpha))}{(1 – \alpha)} |b_1| \right) r^2
\]

\[
\leq (1 + |b_1|)r + \frac{1}{\Omega^k} \left( \frac{(1 – \alpha)}{(\Omega – \alpha)} – \frac{(\Omega^k (\Omega + \alpha))}{(\Omega – \alpha)} |b_1| \right) r^2.
\]

Next, we prove the closure property related to the class \( \overline{(S_H)}^k (\delta, \beta, \lambda, \alpha) \).

Theorem 2.4. Let the functions \( f_{(k_i)}(z) \) defined by

\[
f_{(k_i)}(z) = z – \sum_{n=2}^{\infty} |a_{(n,i)}| z^n + (-1)^k \sum_{n=1}^{\infty} |b_{(n,i)}| \overline{(z^n)},
\]

be in the class \( \overline{(S_H)}^k (\delta, \beta, \lambda, \alpha) \), for every \( i = 1, 2, \ldots, m \). Then the convex combination of \( f_{(k_i)} \), denoted by \( \sum_{i=1}^m t_i f_{(k_i)}(z) \), are also in the class \( \overline{(S_H)}^k (\delta, \beta, \lambda, \alpha) \), where \( \sum_{i=1}^m t_i = 1 \) and \( 0 \leq t_i \leq 1 \).

Proof. According to the definition of the convex combination of \( f_{(k_i)} \), we can write

\[
\sum_{i=1}^m t_i f_{(k_i)}(z) = z – \sum_{n=2}^{\infty} \left( \sum_{i=1}^m t_i |a_{(n,i)}| \right) z^n + (-1)^k \sum_{n=1}^{\infty} \left( \sum_{i=1}^m t_i |b_{(n,i)}| \right) \overline{(z^n)}.
\]

Further, since \( f_{(k_i)}(z) \) are in \( \overline{(S_H)}^k (\delta, \beta, \lambda, \alpha) \) for every \( i = 1, 2, \ldots, m \), then by (2.2), we have

\[
\sum_{n=2}^{\infty} \frac{\Omega^k [\Omega – \alpha]}{1 – \alpha} \left( \sum_{i=1}^m t_i |a_{(n,i)}| \right) + \sum_{n=1}^{\infty} \frac{\Omega^k [\Omega + \alpha]}{1 – \alpha} \left( \sum_{i=1}^m t_i |b_{(n,i)}| \right)
\]

\[
= \sum_{i=1}^m t_i \left[ \sum_{n=2}^{\infty} \frac{\Omega^k [\Omega – \alpha]}{1 – \alpha} |a_{(n,i)}| + \sum_{n=1}^{\infty} \frac{\Omega^k [\Omega + \alpha]}{1 – \alpha} |b_{(n,i)}| \right]
\leq 1.
\]

Therefore, \( \sum_{i=1}^m t_i f_{(k_i)} \in \overline{(S_H)}^k (\delta, \beta, \lambda, \alpha). \

Next, we present the extreme points related to the class \( \overline{S_H}^k (\delta, \beta, \lambda, \alpha). \)

Theorem 2.5. A function \( f \in \overline{S_H}^k (\delta, \beta, \lambda, \alpha) \) if and only if \( f \) can be expressed as

\[
f(z) = \sum_{n=1}^{\infty} \left( X_n h_n(z) + Y_n g_n(z) \right), \tag{2.4}
\]

where

\[
h_1(z) = z, \quad h_n(z) = z – \frac{(1 – \alpha)}{\Omega^k (\Omega – \alpha)} z^n, \quad n \geq 2,
\]

\[
g_n(z) = z + (-1)^k \frac{(1 – \alpha)}{\Omega^k (\Omega – \alpha)} \overline{(z^n)}, \quad n \geq 1,
\]

and

\[
\sum_{n=1}^{\infty} (X_n + Y_n) = 1, \quad X_n \geq 0, \quad Y_n \geq 0,
\]

\[
\Omega^k = [\beta(n – 1)(\lambda – \delta) + 1]^k, \quad \Omega = [\beta(n – 1)(\lambda – \delta) + 1], \quad 0 \leq \alpha < 1, \quad \delta \geq 0, \quad \beta > 0, \quad \lambda > 0, \quad \delta \neq \lambda, \quad k \in \mathbb{N}_0.
\]

In particular, the extreme points of \( \overline{S_H}^k (\delta, \beta, \lambda, \alpha) \) are \( \{ h_n \} \) and \( \{ g_n \} \).

Proof. Note that for \( f \) of the form (2.4), we may write

\[
f(z) = \sum_{n=1}^{\infty} (X_n h_n + Y_n g_n) = \sum_{n=1}^{\infty} (X_n + Y_n) z – \sum_{n=2}^{\infty} \frac{(1 – \alpha)}{\Omega^k (\Omega – \alpha)} Y_n \overline{(z^n)}.
\]

Then

\[
\sum_{n=2}^{\infty} \frac{\Omega^k (\Omega – \alpha)}{(1 – \alpha)} \left( \frac{(1 – \alpha)}{\Omega^k (\Omega – \alpha)} X_n \right) + \sum_{n=1}^{\infty} \frac{\Omega^k (\Omega – \alpha)}{(1 – \alpha)} \left( \frac{(1 – \alpha)}{\Omega^k (\Omega – \alpha)} Y_n \right)
\]

\[
= \sum_{n=2}^{\infty} X_n + \sum_{n=1}^{\infty} Y_n
\]

\[
= \sum_{n=1}^{\infty} X_n – X_1 + \sum_{n=1}^{\infty} Y_n = 1 – X_1 \leq 1.
\]

So, \( f \in \overline{S_H}^k (\delta, \beta, \lambda, \alpha) \). Conversely, suppose that \( f \in \overline{S_H}^k (\delta, \beta, \lambda, \alpha) \).

Set

\[
X_n = \frac{\Omega^k (\Omega – \alpha)}{1 – \alpha} |a_n|, \quad 0 \leq \alpha < 1, \quad 0 \leq X_n \leq 1, \quad n \geq 2,
\]

\[
Y_n = \frac{\Omega^k (\Omega – \alpha)}{1 – \alpha} |b_n|, \quad 0 \leq \alpha < 1, \quad 0 \leq Y_n \leq 1, \quad n \geq 1.
\]

We define

\[
X_1 = 1 – \sum_{n=2}^{\infty} X_n – \sum_{n=1}^{\infty} Y_n.
\]

Therefore, \( f \) can be written as

\[
f(z) = z – \sum_{n=2}^{\infty} |a_n| z^n + (-1)^k \overline{\left( \sum_{n=1}^{\infty} |b_n| z^n \right)}
\]

\[
= z – \sum_{n=2}^{\infty} \frac{(1 – \alpha) X_n}{\Omega^k (\Omega – \alpha)} z^n + (-1)^k \overline{\left( \sum_{n=1}^{\infty} \frac{(1 – \alpha) Y_n}{\Omega^k (\Omega – \alpha)} z^n \right)}
\]

\[
= z + \sum_{n=2}^{\infty} (h_n(z) – z) X_n + \sum_{n=1}^{\infty} (g_n(z) – z) Y_n
\]

\[
= \sum_{n=2}^{\infty} h_n(z) X_n + \sum_{n=1}^{\infty} g_n(z) Y_n + z \left( 1 – \sum_{n=2}^{\infty} X_n – \sum_{n=1}^{\infty} Y_n \right)
\]

\[
= \sum_{n=1}^{\infty} (h_n(z) X_n + g_n(z) Y_n)
\]

as required.

Following Avci and Zlotkiewicz [5], we refer to the \( \gamma \)-neighborhood of a function \( f \in S_H^* (\alpha) \) as defined by

\[
N_{\gamma}(f) = \{ F(z) = z + \sum_{n=2}^{\infty} A_n z^n + \sum_{n=1}^{\infty} \overline{B_n z^n} : \sum_{n=2}^{\infty} n (|a_n – A_n| + |b_n – B_n|) + |b_1 – B_1| \leq \gamma \}.
\]

In our case, we define the generalized \( \gamma \)-neighborhood of \( f \) to be the set

\[
N_{\gamma}^D(f) = \{ F(z) : \sum_{n=2}^{\infty} ( \beta(n – 1)(\lambda – \delta) + 1)^k \left[ (\Omega – \alpha)(|a_n – A_n| + (\Omega + \alpha)|b_n – B_n|) \right] + (1 + \alpha)|b_1 – B_1| \leq (1 – \alpha)\gamma \}. \tag{2.5}
\]

Now, we see the following theorem:

Theorem 2.6. Let \( f \in S_H^k(\delta, \beta, \lambda, \alpha) \) be given by (1.2). If \( f \) satisfies the conditions

\[
\sum_{n=2}^{\infty} n (\beta(n-1)(\lambda – \delta) + 1)^k \left( (\Omega – \alpha) |a_n| + (\Omega + \alpha) |b_n| \right) \leq (1 – \alpha) – (1 + \alpha) |b_1|, \tag{2.6}
\]

where

\[
\Omega^k = [\beta(n – 1)(\lambda – \delta) + 1]^k, \quad \Omega = [\beta(n – 1)(\lambda – \delta) + 1], \quad 0 \leq \alpha < 1, \quad \delta \geq 0, \quad \beta > 0, \quad \lambda > 0, \quad \delta \neq \lambda, \quad k \in \mathbb{N}_0,
\]

and

\[
\gamma \leq \frac{1}{2} \left( 1 – \frac{(1 + \alpha)}{(1 – \alpha)} |b_1| \right), \tag{2.7}
\]

then \( N_{\gamma}^D(f) \subset S_H^k(\delta, \beta, \lambda, \alpha) \).

Proof. Let \( f \) satisfy (2.6) and let \( F(z) \) be given by

\[
F(z) = z + \overline{B_1 z} + \sum_{n=2}^{\infty} \left( A_n z^n + \overline{B_n z^n} \right),
\]

which belongs to \( N_{\gamma}^D(f) \). In other words, it suffices to show that \( F \) satisfies the condition

\[
\sum_{n=2}^{\infty} \left[ \frac{(\Omega – \alpha)}{(1 – \alpha)} |A_n| + \frac{(\Omega + \alpha)}{(1 – \alpha)} |B_n| \right] (\beta(n – 1)(\lambda – \delta) + 1)^k + \frac{(1 + \alpha)}{(1 – \alpha)} |B_1| \leq 1.
\]

We observe that

\[
N_{\gamma}^D(f) = \sum_{n=2}^{\infty} \left[ \frac{(\Omega – \alpha)}{(1 – \alpha)} |A_n| + \frac{(\Omega + \alpha)}{(1 – \alpha)} |B_n| \right]
(\beta(n – 1)(\lambda – \delta) + 1)^k + \frac{(1 + \alpha)}{(1 – \alpha)} |B_1|
\]

\[
= \sum_{n=2}^{\infty} \left[ \frac{(\Omega – \alpha)}{(1 – \alpha)} |A_n – a_n + a_n| + \frac{(\Omega + \alpha)}{(1 – \alpha)} |B_n – b_n + b_n| \right]
(\beta(n – 1)(\lambda – \delta) + 1)^k + \frac{(1 + \alpha)}{(1 – \alpha)} |B_1 – b_1 + b_1|
\]

\[
= \sum_{n=2}^{\infty} \left[ \frac{(\Omega – \alpha)}{(1 – \alpha)} |A_n – a_n| + \frac{(\Omega + \alpha)}{(1 – \alpha)} |B_n – b_n| \right]
(\beta(n – 1)(\lambda – \delta) + 1)^k
\]

\[
+ \sum_{n=2}^{\infty} \left[ \frac{(\Omega – \alpha)}{(1 – \alpha)} |a_n| + \frac{(\Omega + \alpha)}{(1 – \alpha)} |b_n| \right]
(\beta(n – 1)(\lambda – \delta) + 1)^k + \frac{(1 + \alpha)}{(1 – \alpha)} |B_1 – b_1| + \frac{(1 + \alpha)}{(1 – \alpha)} |b_1|
\]

\[
= \sum_{n=2}^{\infty} \left[ \frac{(\Omega – \alpha)}{(1 – \alpha)} |A_n – a_n| + \frac{(\Omega + \alpha)}{(1 – \alpha)} |B_n – b_n| \right]
(\beta(n – 1)(\lambda – \delta) + 1)^k
\]

\[
+ \frac{(1 + \alpha)}{(1 – \alpha)} |B_1 – b_1| + \sum_{n=2}^{\infty} \left[ \frac{(\Omega – \alpha)}{(1 – \alpha)} |a_n| + \frac{(\Omega + \alpha)}{(1 – \alpha)} |b_n| \right]
(\beta(n – 1)(\lambda – \delta) + 1)^k + \frac{(1 + \alpha)}{(1 – \alpha)} |b_1|
\]

\[
= \gamma + \frac{(1 + \alpha)}{(1 – \alpha)} |b_1| + \frac{1}{2} \sum_{n=2}^{\infty} n \left[ \frac{(\Psi – \alpha)}{(1 – \alpha)} |a_n| + \frac{(\Psi + \alpha)}{(1 – \alpha)} |b_n| \right]
(\beta(n – 1)(\lambda – \delta) + 1)^k
\]

\[
\leq \gamma + \frac{(1 + \alpha)}{(1 – \alpha)} |b_1| + \frac{1}{2} \left( 1 – \frac{(1 + \alpha)}{(1 – \alpha)} |b_1| \right).
\]

Now, this last expression is never greater than one provided that

\[
\gamma \leq 1 – \frac{(1 + \alpha)}{(1 – \alpha)} |b_1| – \frac{1}{2} \left( 1 – \frac{(1 + \alpha)}{(1 – \alpha)} |b_1| \right) = \frac{1}{2} \left( 1 – \frac{(1 + \alpha)}{(1 – \alpha)} |b_1| \right).
\]

Remark 2.1. Other works related to harmonic univalent functions can be found in [[7]-[10]].

CONCLUSION

In this paper, we obtained some results concerning the coefficient bounds, growth bounds, a closure property, extreme points, neighborhood and a convex combination of harmonic univalent Function in the open unit disc, which are related to the differential operator. We suggest to introduce a new subclass of p-valent starlike functions with negative coefficients in the open unit disc which is defined by a generalised derivative operator.

REFERENCES

  1. Clunie, Sheil-Small, J., (1984). Harmonic univalent functions, Ann. Acad. Sci. Fen. Series A.I.Math. 9: 3-25.
  2. Darus, M., Ibrahim, R.W., (2009). On subclasses for generalized operators of complex order. Far East J. Math. Sci., 33: 299-308.
  3. Jahangiri, J. M., :(1999). Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., bf 235: 470-477.
  4. Jahangiri, J. M., Murugusundaramoorthy, G. & Vijaya, K., (2002). Salagean-type harmonic univalent functions. Southwest J. Pure Appl. Math., 2: 77–82.
  5. Avci, Y., Zlotkiewicz, E., (1990). On harmonic univalent mapping, Ann. Univ. Mariae Curie-Sklodowska Sect., A44: 1-7.
  6. Silverman, H., (1998). Harmonic univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51: 283-289.
  7. Silverman, H., Silvia, E.M., (1999). Subclasses of harmonic univalent functions, New Zeal. J. Math., 28: 275-284.
  8. Yalcin, S., Öztürk, M., (2004). A new subclass of complex harmonic functions, Math. Ineq. Appl., 7: 55-61.
  9. Murugusundaramoorthy, G., (2003). A class of ruscheweyh-type harmonic univalent functions with varying arguments, Southwest Journal of Pure and Applied Mathematics, 2: 90–95.
  10. Vijaya, K., Murugusundaramoorthy, G., (2004). On certain classes of harmonic functions involving Ruscheweyh derivatives. Bull. Calcutta Math. Soc., 96(2): 99–108.
Scroll to Top

GET OUR MONTHLY NEWSLETTER