Projective Geometry Structure of zn* (A Case of n=pqrs)
Felix Komu1, Benard M. Kivunge2, Fredrick O. Nyamwala3
1,3Moi University
2Kenyatta University
DOI: https://doi.org/10.51244/IJRSI.2025.12020031
Received: 21 January 2025; Review: 29 January 2025; Accepted: 31 January 2025; Published: 05 March 2025
The concept of projective geometry has been studied by a number of mathematicians, though the initial focus was on Euclidean and non Euclidean geometries on the relationship between lines and points on a 3D projective space. This paper will focus on the dempotent elements in Z∗, for n=pqrs, specifically focusing on the triples, fano planes and order 15 projective structures. We shall count the number of the triples, fano planes and order 15 projective structures, and establish the relationship between them. It extends the results of projective geometry structure of Zn*,n=pqr.
Key Phrases: Primes, Triple Systems, Fano Planes.
Projective geometry structure of various permutation groups has been also computed. Projective geometry structure for the group Zn*,n=pqr, has been computed This paper seeks to extent the established results for the group We shall investigate the relationship between order 2 elements in the ring of units modulo , the triples, fano planes and order 15 geometric structures, n= pqrs.
Preliminaries
Fano plane
A fano plane is the smallest finite projective plane of order 2, containing 7 points and 7 lines that involves the set of integers and the modulus operations.
Triple system
A triple system in Zn* is denoted by (a1, a2, a3) where there exists ki > 1, i = 1, 2, 3, such that a2 ≡ 1(mod n) with a1a2 ≡ a3(mod n), a1a3 ≡ a2 (mod n) and a2a3 ≡ a1 (mod n).
Euler phi function
Let a be an elements in Z∗. Then Euler’s phi function φ(a) denotes the number of positive integers ≤ a and relatively prime to a.
Given that a is a natural number with (a, n) = 1, aφ(n) ≡ 1 (mod n).
Chinese Remainder Theorem
Let n1, n2, . . . , n3 be pairwise co-prime positive integers and x1, x2, . . . , xk be arbitrary integers. The system of simultaneous congruence
a ≡ x1(mod n1)
a≡x2 (modn2)
a ≡ xk(mod nk)
has a unique solution modulo n = n1n2 . . . nk
Corollary (Chinese remainder theorem)
If n is an odd number with n =p_1^(k_1 ) p_2^(k_2 )…p_r^(k_r ) where r is the number of distinct primes of n and ki > 0 for 1 ≤ i ≤ r, then the equation x2 ≡ 1 (mod n) has exactly 2r distinct solutions (mod n).
Proof :
Suppose x^2≡1(modp_1^(k_1 ) p_2^(k_2 )…p_r^(k_r )), then p_1^(k_1 ) p_2^(k_2 )…(p_r^(k_r ))⁄x^2 -1. But since p_i^’ are distinct primes, then p_1^(k_1 ) p_2^(k_2 )…(p_r^(k_r ))⁄x^2 -1 only happens iff p_i^(k_i ) / x^2-1, for all 1≤i≤r. But each of the congruences has two solutions , i.e x=±1 (modp_i^(k_i )).
For each i, 1 ≤ i ≤ r choose yi = ±1 and utilize the linear congruence’s system;
x≡y_1^(k_1 )
x≡y_2^(k_2 )
.
.
.
.
.
.
.
x≡y_r^(k_r ) .
By the Chinese Remainder Theorem, this system has a unique solution modp_1^(k_1 ) p_2^(k_2 )…p_r^(k_r ).
Since we have two choices for each yi (namely ±1), and we have r congruence’s, then the possible choices for y1 , … , yr are 2r.
Assuming that the 2r choices of x are not distinct (mod n), i.e. x1 ≡ x2(mod n), then
x1 ≡ x2(modp_i^(k_i )) for all i. However, any two values of x are not congruent p_i^(k_i ) for at least one i. Therefore, the above system of linear congruence’s has 2r distinct solutions x(mod n). Any of the 2r choices satisfies x2 ≡ 1 (modp_i^(k_i )) for 1 ≤ i ≤ r. Hence, there are 2r distinct solutions to x2 ≡ 1(mod n)
Lemma
For x2 ≡ 1(mod n) and y2 ≡ 1(mod n), we have (xy)2 ≡ 1(mod n)
Proof:
(xy)2 = x2y2 ≡ 1 ∗ 1(mod n) = 1(mod n)
Lemma
Given x(xy) = x2y = 1 ∗ y ≡ y(mod n) and y(xy) = xy2 = x ∗ 1 ≡ x(mod n), then xy ≡ ±1(mod n) Hence, (xy)2 ≡ 1(mod n) if x2 ≡ 1(mod n) and y2 ≡ 1(mod n)
Proof:
From x2 ≡ 1(mod n) and y2 ≡ 1(mod n) we have, x ≡ ±1(mod n) and y ≡ ±1(mod n).
Hence, xy ≡ (±1)(±1)(mod n) = (±1)(mod n)
Theorem
Consider the set Z∗ n = pqrs, where p, q, r, s are distinct odd primes. The equation x2 ≡ 1(mod n) has 16 distinct solutions.
Proof:
By The Chinese Remainder Theorem, there are 24 = 16 distinct solutions to the equation x2 ≡ 1(mod n), for n = pqrs, with p, q, r, s being odd prime numbers and p > q > r > s > 2. These solutions are of the form:
Case A: We have two trivial solutions that correspond to the following two items;
x ≡ 1(mod p) ≡ 1(mod q) ≡ 1(mod r) ≡ 1(mod s)
This is the unit solution, and
x ≡ −1(mod p) ≡ −1(mod q) ≡ −1(mod r) ≡ −1(mod ) s)
Case B: The non-trivial solutions correspond to the following;
x ≡ 1(mod p) ≡ −1(mod q) ≡ −1(mod r) ≡ 1(mod s)
x ≡ 1(mod p) ≡ 1(mod q) ≡ −1(mod r) ≡ −1(mod s)
x ≡ 1(mod p) ≡ −1(mod q) ≡ 1(mod r) ≡ −1(mod s)
x ≡ −1(mod p) ≡ 1(mod q) ≡ 1(mod r) ≡ 1(mod s)
x ≡ −1(mod p) ≡ −1(mod q) ≡ −1(mod r) ≡ 1(mod s)
x ≡ −1(mod p) ≡ 1(mod q) ≡ −1(mod r) ≡ −1(mod s)
x ≡ 1(mod p) ≡ 1(mod q) ≡ −1(mod r) ≡ 1(mod s)
x ≡ −1(mod p) ≡ −1(mod q) ≡ 1(mod r) ≡ −1(mod s)
x ≡ 1(mod p) ≡ −1(mod q) ≡ 1(mod r) ≡ 1(mod s)
x ≡ 1(mod p) ≡ 1(mod q) ≡ 1(mod r) ≡ −1(mod s)
x ≡ 1(mod p) ≡ −1(mod q) ≡ −1(mod r) ≡ −1(mod s)
x ≡ −1(mod p) ≡ 1(mod q) ≡ −1(mod r) ≡ 1(mod s)
x ≡ −1(mod p) ≡ −1(mod q) ≡ 1(mod r) ≡ 1(mod s)
x ≡ −1(mod p) ≡ 1(mod q) ≡ 1(mod r) ≡ −1(mod s)
Table 1: Non-unit idempotents in Zn, for n = pqrs
p | Q | R | R | N | values of x satisfying x2 ≡ 1(mod n) | |||||||||
3 | 5 | 7 | 11 | 1155 | 34 | 76 | 274 | 386 | 419 | 461 | 496 | 659 | 694 | 736 |
3 | 5 | 7 | 13 | 1365 | 64 | 118 | 209 | 274 | 391 | 454 | 664 | 701 | 911 | 974 |
3 | 5 | 7 | 17 | 1785 | 169 | 239 | 356 | 526 | 596 | 664 | 764 | 1021 | 1121 | 1189 |
3 | 5 | 11 | 13 | 2145 | 131 | 274 | 571 | 584 | 716 | 859 | 989 | 1156 | 1286 | 1429 |
3 | 5 | 11 | 17 | 2805 | 254 | 494 | 749 | 934 | 1121 | 1189 | 1376 | 1429 | 1616 | 1684 |
3 | 11 | 13 | 17 | 3315 | 664 | 766 | 781 | 1106 | 1429 | 1444 | 1546 | 1769 | 1871 | 1886 |
values of x satisfying x2 ≡ 1(mod n) | ||||
769 | 881 | 1079 | 1121 | 1154 |
1091 | 1156 | 1184 | 1301 | 1364 |
1258 | 1429 | 1546 | 1616 | 1784 |
1561 | 1574 | 1871 | 2014 | 2144 |
1871 | 2056 | 2311 | 2551 | 2804 |
2209 | 2549 | 2549 | 2651 | 3314 |
Example
Consider the 15 non unit solutions Z∗, n = 1155,, the triples are given by 34, 76, 274, 386, 419, 461, 496,659, 694, 736, 769, 881, 1079, 1121 and 1154. From these solutions, we make the following observations;
The 15 non unit solutions of the group generate 35 triples as follows. These triples are computed 9mod 1155).
34 ∗ 76 ≡ 274
34 ∗ 386 ≡ 419
34 ∗ 694 ≡ 496
34 ∗ 736 ≡ 769
34 ∗ 881 ≡ 1079
34 ∗ 1121 ≡ 1154
76 ∗ 386 ≡ 461
76 ∗ 419 ≡ 659
76 ∗ 496 ≡ 736
76 ∗ 694 ≡ 769
76 ∗ 881 ≡ 1121
76 ∗ 1079 ≡ 1154
274 ∗ 386 ≡ 659
274 ∗ 419 ≡ 461
274 ∗ 496 ≡ 769
274 ∗ 694 ≡ 736
274 ∗ 881 ≡ 1154
274 ∗ 1079 ≡ 1121
386 ∗ 496 ≡ 881
386 ∗ 694 ≡ 1079
386 ∗ 736 ≡ 1121
386 ∗ 769 ≡ 1154
419 ∗ 694 ≡ 881
419 ∗ 736 ≡ 1154
419 ∗ 769 ≡ 1121
461 ∗ 694 ≡ 1154
461 ∗ 736 ≡ 881
461 ∗ 769 ≡ 1079
496 ∗ 659 ≡ 1154
419 ∗ 496 ≡ 1079
496 ∗ 461 ≡ 1121
659 ∗ 694 ≡ 1121
659 ∗ 769 ≡ 881
659∗ 736 ≡ 1079
34∗ 461 ≡ 659
That;
34 ≡ 1(mod 3) ≡ −1(mod 5) ≡ −1(mod 7) ≡ 1(mod 11)
76 ≡ 1(mod 3) ≡ 1(mod 5) ≡ −1(mod 7) ≡ −1(mod 11)
274 ≡ 1(mod 3) ≡ −1(mod 5) ≡ 1(mod 7) ≡ −1(mod 11)
386 ≡ −1(mod 3) ≡ 1(mod 5) ≡ 1(mod 7) ≡ 1(mod 11)
419 ≡ −1(mod 3) ≡ −1(mod 5) ≡ −1(mod 7) ≡ 1(mod 11)
461 ≡ −1(mod 3) ≡ 1(mod 5) ≡ −1(mod 7) ≡ −1(mod 11)
496 ≡ 1(mod 3) ≡ 1(mod 5) ≡ −1(mod 7) ≡ 1(mod 11)
659 ≡ −1(mod 3) ≡ −1(mod 5) ≡ 1(mod 7) ≡ −1(mod 11)
694 ≡ 1(mod 3) ≡ −1(mod 5) ≡ 1(mod 7) ≡ 1(mod 11)
736 ≡ 1(mod 3) ≡ 1(mod 5) ≡ 1(mod 7) ≡ −1(mod 11)
769 ≡ 1(mod 3) ≡ −1(mod 5) ≡ −1(mod 7) ≡ −1(mod 11)
881 ≡ −1(mod 3) ≡ 1(mod 5) ≡ −1(mod 7) ≡ 1(mod 11)
1079 ≡ −1(mod 3) ≡ −1(mod 5) ≡ 1(mod 7) ≡ 1(mod 11)
1121 ≡ −1(mod 3) ≡ 1(mod 5) ≡ 1(mod 7) ≡ −1(mod 11)
1154 ≡ −1(mod 3) ≡ −1(mod 5) ≡ −1(mod 7) ≡ −1(mod 11)
This establishes theorem 3.3
To get a fano plane, we fix a triple, we premultiply the three points of the triple with a fourth point, we shall generate three more points. In total we shall have 7 points which forms a fano plane. Consider the 35 triples of Z∗, n= 1155. Repeating this procedure for all the 35 triples, we generate 15 fano planes as listed as follows;
34, 76, 274, 386, 419, 461, 659
34, 76, 274, 496, 694, 736, 769
34, 76, 274, 881, 1079, 1121, 1154
34, 386, 419, 496, 694, 881, 1079
34, 386, 419, 736, 769, 1121, 1154
34, 461, 659, 496, 694, 1121, 1154
34, 461, 659, 736, 769, 881, 1079
76, 386, 461, 496, 736, 881, 1121
76, 386, 461, 694, 769, 1079, 1154
76, 419, 659, 694, 769, 881, 1121
76, 419, 496, 659, 736, 1079, 1154
1274, 386, 496, 659, 769, 881, 1154
274, 386, 659, 694, 736, 1079, 1121
274, 419, 461, 694, 736, 881, 1154
274, 419, 461, 496, 769, 1079, 1121
Fitting triples into a Fano plane:
The first fano plane can be drawn as follows;
All the other fano planes can be drawn in a similar manner.
Remarks
Every triple will appear in three distinct fano planes.
Order 15 Projective geometry structure of Z∗, n= pqrs
To get the order 15 geometric structure, we fix a fano plane, and pick a distinct eighth element and premultiply it with all the elements of the fixed fano plane, we get the required geometric structure.
Example
Consider the 15 non unit solutions of Z∗, n= 1155 given by 34, 76, 274, 386, 419, 461, 496, 659,
694, 736, 769, 881, 1079, 1121 and 1154. We have already seen that Z∗, n= 1155 has 35 triples and 15 fano planes. Consider the first fano plane given by 34,76,274,386,419,461,659. If we fix these elements and premultiply all by 694, we shall get the elements 34, 76, 274, 386, 419, 461,659 ,694,694,736,769,881,1079,1121,1154. Fixing any other fano plane and pre multiplying its elements with a distinct element from, we shall get the same result. Therefore, we have only one order 15 geometric structure given as follows; 34,76,274,386,419,461,659 ,694 ,694,736,769,881,1079,1121,1154
We can make the following observations;
Each fano plane appears once in the order 15 geometric structures
The order 15 projective geometric structure is made up of the 15 fano planes and 35 triples
We have established that Z∗, n= pqrs has 15 non unit solutions. These non unit solutions generate 35 triples. The 35 triples generate 15 fano planes which in turn generate only one order 15 projective geometric stricture.